meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
en:controller:setup [2021/10/28 13:34]
dmitry
en:controller:setup [2022/08/26 11:45]
dmitry old revision restored (2022/08/12 18:10)
Line 1: Line 1:
 ~~Title: Controller setup~~ ~~Title: Controller setup~~
  
-====== Controller (v.0.8) ======+====== Controller (v.0.8.7) ======
  
 The controller allows you to control BLDC (Brushless Direct Current Motor) and PMSM (Permanent Magnet Synchronous Motor) electric motors. At the moment we are producing three types of controllers for different motors power. The controller allows you to control BLDC (Brushless Direct Current Motor) and PMSM (Permanent Magnet Synchronous Motor) electric motors. At the moment we are producing three types of controllers for different motors power.
Line 48: Line 48:
 When the power is turned on for the first time, the controller will start automatically. To enable/disable the controller, you must connect an external switch according to the diagram or configure the button located on the back of the On-board computer in the menu **Devices** > **Controller** > **Extra parameters** > **Disable button**.\\ When the power is turned on for the first time, the controller will start automatically. To enable/disable the controller, you must connect an external switch according to the diagram or configure the button located on the back of the On-board computer in the menu **Devices** > **Controller** > **Extra parameters** > **Disable button**.\\
  
-You can find the wiring diagrams of the other devices on this [[https://drive.google.com/file/d/1KkEgWcJ5U-AEkk6GrXhDNlYXFCcsjpUQ/view|link]]. By default, all peripherals (throttle, brake, switches, etc.) are connected into ports located on the backside of **[[en:display:start|On-board computer]]**. To access the ports, you need to unscrew five screws and remove the plastic cover. For connection, use PHD 2.0 connectors and crimp pins, which are included in the kit. If you do not have a crimping tool such as Crimper SN-2549, you must order "Crimped wires for display". The On-board computer is connected to the controller with one CAN-wire 1.2 meters long, which is included in the controller kit. Be careful, the CAN-wire from the Controller is connected to the **SYSTEM** connector on the backside of the On-board computer.+You can find the wiring diagrams of the other devices on this [[https://bit.ly/3zPIYvn|link]]. By default, all peripherals (throttle, brake, switches, etc.) are connected into ports located on the backside of **[[en:display:start|On-board computer]]**. To access the ports, you need to unscrew five screws and remove the plastic cover. For connection, use PHD 2.0 connectors and crimp pins, which are included in the kit. If you do not have a crimping tool such as Crimper SN-2549, you must order "Crimped wires for display". The On-board computer is connected to the controller with one CAN-wire 1.2 meters long, which is included in the controller kit. Be careful, the CAN-wire from the Controller is connected to the **SYSTEM** connector on the backside of the On-board computer.
  
 If you want to connect peripherals directly to the Controller, you need to order "Control-side inputs", in the diagram below this switching option is designated as "Alternative connection". You can also use a mixed connection, for example, connect the throttle lever to the On-board computer, and the brake lever to the Controller.\\ \\ If you want to connect peripherals directly to the Controller, you need to order "Control-side inputs", in the diagram below this switching option is designated as "Alternative connection". You can also use a mixed connection, for example, connect the throttle lever to the On-board computer, and the brake lever to the Controller.\\ \\
Line 88: Line 88:
 ===== Auto-setup ===== ===== Auto-setup =====
  
-The auto-setup function in the **Controller** > **Auto-setup** menu section allows you to automatically set up the electric motor, throttle, and brake levers.+The auto-setup function in the **Controller** > **Auto-setup** menu section allows you to automatically set up the electric motor, throttle, and brake levers. If the throttle and brake levers are connected to the On-board computer, then they must be configured in [[en:display:start#control_setup|section]] menu **On-board computer** > **Control setup**. In this case, when starting the function **Full setup**, you must skip the menu items **Brake** and **Throttle** (they will be detected as an error) or you can not start **Full setup** and activate each setup menu item manually starting with **Motor LR**, then **Motor** and **Angle correction**. If you have an electric motor without a temperature sensor, then you need to disable it in [[en:controller:setup#motor_temperature_sensor|menu]] section **Controller** > **Motor setup** > **Motor t°-sensor** > **Sensor type**. If this is not done, then auto-setup of the motor will show an error.
  
 {{:en:controller:1_0.8.png?nolink }} {{:en:controller:1_0.8.png?nolink }}
Line 104: Line 104:
 If you have a throttle lever and an analog brake connected, then you need to enable Full Setup, and follow the instructions on the On-Board computer screen. The corresponding menu items will indicate when to press and release the throttle or brake lever. If you have a throttle lever and an analog brake connected, then you need to enable Full Setup, and follow the instructions on the On-Board computer screen. The corresponding menu items will indicate when to press and release the throttle or brake lever.
  
-If only one throttle lever is connected, you must independently turn on the items step-by-step: Throttle, Motor, Angle correction. When you enable each of the menu items, the hints will be displayed. Auto-setup function **Motor LR** detects the inductance and resistance of the motor. You can see the measurement results in the menu section **Controller** > **Motor setup**, items **Phase resistance**, **Inductance d** and **Inductance q**.+If only one throttle lever is connected, you must independently turn on the items step-by-step: **Throttle****Motor LR****Motor**, **Angle correction**. When you enable each of the menu items, the hints will be displayed. Auto-setup function **Motor LR** detects the inductance and resistance of the motor. You can see the measurement results in the menu section **Controller** > **Motor setup**, items **Phase resistance**, **Inductance d** and **Inductance q**.
  
 If the motor is heavy and autodetect does not happen, you can gently push it with your hand or increase the tuning current in the **Controller** > **Auto-setup** > **Setup current** section, for example, twice. The setup current can be selected in the range from **2A** to **50A**, in increments of **1A**. If the motor is heavy and autodetect does not happen, you can gently push it with your hand or increase the tuning current in the **Controller** > **Auto-setup** > **Setup current** section, for example, twice. The setup current can be selected in the range from **2A** to **50A**, in increments of **1A**.
Line 114: Line 114:
 ===== Firmware update ===== ===== Firmware update =====
  
-In the menu section **Controller** > **Settings and Update**, you can update the Controller's firmware, reset settings, import or export a configuration. You can upload all controller settings to a microSD card. The created file with the name **NCconf.cfg** - **NCconf9.cfg** you can open with the "Notepad" program, see all your settings, make any changes, save. Likewise, you can import a previously saved configuration into the Controller. Trip computer settings cannot be exported or imported. On-board computer settings can be exported and imported in separate [[en:display:start#import_and_export_of_settings|sections]] of the Onboard computer menu. This function is only available in the On-board computer firmware version **0.7B** and higher.+In the menu section **Controller** > **Update and Settings**, you can update the Controller's firmware, reset settings, import or export a configuration. You can upload all controller settings to a microSD card. The created file with the name **NCconf.cfg** - **NCconf9.cfg** you can open with the "Notepad" program, see all your settings, make any changes, save. Likewise, you can import a previously saved configuration into the Controller. Trip computer settings cannot be exported or imported. On-board computer settings can be exported and imported in separate [[en:display:start#import_and_export_of_settings|sections]] of the Onboard computer menu. This function is only available in the On-board computer firmware version **0.7B** and higher.
  
 {{:en:controller:k3_en.png?nolink |}} {{:en:controller:k3_en.png?nolink |}}
Line 151: Line 151:
 **Power** — maximum power (discharge) of the battery, in kilowatts (**kW**). Select of values from **0.00kW** to **30.0kW**, in increments of **0.1kW**. Set to 0.0kW to disable the power limiting limit.\\ **Power** — maximum power (discharge) of the battery, in kilowatts (**kW**). Select of values from **0.00kW** to **30.0kW**, in increments of **0.1kW**. Set to 0.0kW to disable the power limiting limit.\\
  
-**Speed** — maximum speed in percentage (%). Select of values from **4%** to **150%**, in increments of **2%**. The value of this parameter determines the percentage of speed depending on the reference speed (see section **[[en:controller:setup#speedometer_setup|Speedometer setup]]**). A speed value over 100% activates the field weakening mode, which allows the motor to accelerate above the supply voltage(see section **[[en:controller:setup#field_weakening_setup|Field weakening setup]]**).\\+**Speed** — maximum speed in percentage (%). Select of values from **4%** to **150%**, in increments of **2%**. The value of this parameter determines the percentage of speed depending on the reference speed (see section **[[en:controller:setup#speedometer_setup|Speedometer setup]]**). A speed value over 100% activates the field weakening mode, which allows the motor to accelerate above the supply voltage (see section **[[en:controller:setup#field_weakening_setup|Field weakening setup]]**).\\
  
 ==== Electric brake setup ==== ==== Electric brake setup ====
  
-**Braking phase** — the value of the phase current of braking by the motor, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable **Active braking** in the section **Controller** > **Control**. When using the switch brake, lower brake current change speed makes recuperation more smooth. \\+**Braking phase** — the value of the phase current of braking by the motor, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable **Active braking** in the section **Controller** > **Control**. When using limit switches on mechanical brakes, lower brake current change speed makes recuperation more smooth. \\
  
 ==== Braking phase at speed control ==== ==== Braking phase at speed control ====
Line 179: Line 179:
 ==== Field weakening setup ==== ==== Field weakening setup ====
  
-**Field weakening** — the magnitude of the field weakening current, in Amperes (**A**). Select of values from **0A** to **500A**,  in increments of **2A**. This setting allows you to increase the maximum motor speed and depends on the supply voltage, in any case, the speed will be no more than the maximum supply voltage (**Vmax**) of the controller (**95V limit**).\\ +**Field weakening** — the magnitude of the field weakening current, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. This setting allows you to increase the maximum motor speed and depends on the supply voltage, in any case, the speed will be no more than the maximum supply voltage (**Vmax**) of the controller (**95V limit**).<WRAP center round info 60%> 
- +The current of weakening creates a field that acts against the field of the permanent magnets. The superposition of these fields creates an equivalent field that is below nominal. The attenuation efficiency depends on the parameters of the motor. The best results can be obtained with IPM motors. </WRAP> 
-<WRAP center round info 60%>\\ +\\ 
-The current of weakening creates a field that acts against the field of the permanent magnets. The superposition of these fields creates an equivalent field that is below nominal. The attenuation efficiency depends on the parameters of the motor. The best results can be obtained with IPM motors. +<WRAP center round warning 60%>Warning! High Field weakening setting may damage your motor! It is not recommend to exceed 500Hz on a rotor for most 0.35mm steel motors</WRAP>
-</WRAP>\\+
  
 To set up the weakening, you need: To set up the weakening, you need:
-  * for one of the control modes in the section **Controller** > **Control modes** specify a speed value greater than 100%, for example, Speed 3 is 120%. 
-  * set the weakening current value in the section **Controller** > **Control modes**, you can start from 30A.\\ 
  
-Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified in the control mode. That is if the effective phase current is 70A, and the weakening current is set to 30A, then a minimum of 100A must be specified in the phase current settings. If the phase current increases to 80A, then only 20A will remain for weakening because 80A + 20A = 100A.\\+  * for one of the control modes in the section **Controller**  > **Control modes**  specify a speed value greater than 100%, for example, Speed 3 is 120%. 
 +  * set the weakening current value in the section **Controller**  > **Control modes**, you can start from 30A. 
 + 
 +Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified in the control mode. That is if the effective phase current is 70A, and the weakening current is set to 30A, then a minimum of 100A must be specified in the phase current settings. If the phase current increases to 80A, then only 20A will remain for weakening because 80A + 20A = 100A. 
 + 
 +Also, the Controller will limit the speed of rotation of the motor so that its effective EMF does not exceed the maximum supply voltage of the controller (not the battery). If the motor starts twitching on the suspended wheel, then it is necessary to reduce the weakening current.
  
-Also, the Controller will limit the speed of rotation of the motor so that its effective EMF does not exceed the maximum supply voltage of the controller (not the battery). If the motor starts twitching on the suspended wheel, then it is necessary to reduce the weakening current.\\ 
  
 ==== Current change speed ==== ==== Current change speed ====
Line 219: Line 220:
  
 **Acceleration lim.** and **Deceleration lim.** — are specified in ERPM/s, select of values from **0 ERPM/s** to **500000 ERPM/s**, in increments of **200 ERPM/s **. These settings allow you to limit the speed of acceleration or deceleration of the motor, it is convenient to use on slippery surfaces. For setting go to the **Controller** > **Status flags** section, in this menu there are two parameters that register the maximum acceleration and deceleration — **Max acceleration** and **Max deceleration**. **Reset** the values of these parameters in the same section of the menu, then you need to ride your e-bike in order to register the current dynamics of acceleration and deceleration. You can use these values as a reference and decrease them if you need to limit change speed. If the type of surface changes, for example, it becomes too slippery, then these values can be reduced until it becomes comfortable to catch the moment when the wheel loses traction. \\ **Acceleration lim.** and **Deceleration lim.** — are specified in ERPM/s, select of values from **0 ERPM/s** to **500000 ERPM/s**, in increments of **200 ERPM/s **. These settings allow you to limit the speed of acceleration or deceleration of the motor, it is convenient to use on slippery surfaces. For setting go to the **Controller** > **Status flags** section, in this menu there are two parameters that register the maximum acceleration and deceleration — **Max acceleration** and **Max deceleration**. **Reset** the values of these parameters in the same section of the menu, then you need to ride your e-bike in order to register the current dynamics of acceleration and deceleration. You can use these values as a reference and decrease them if you need to limit change speed. If the type of surface changes, for example, it becomes too slippery, then these values can be reduced until it becomes comfortable to catch the moment when the wheel loses traction. \\
 +
 +**Braking phase** — the value of the phase current of braking by the motor, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable Active braking in the section **Controller** > **Control**. When using limit switches on mechanical brakes, lower brake current change speed makes recuperation more smooth.
  
 **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. This function allows regenerative braking to be initiated when the throttle is released. If **0A** is specified or additional modes are disabled in the **Controller** > **Advanced modes** section of the menu, then for the recuperation level will be used value from menu item in the **Controller** > **Control modes** > **Braking ph. at 0% throttle** menu item.  **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. This function allows regenerative braking to be initiated when the throttle is released. If **0A** is specified or additional modes are disabled in the **Controller** > **Advanced modes** section of the menu, then for the recuperation level will be used value from menu item in the **Controller** > **Control modes** > **Braking ph. at 0% throttle** menu item. 
Line 437: Line 440:
 ===== Motor setup ===== ===== Motor setup =====
  
-The **Controller** > **Motor Setup** menu contains all settings related to electric motor operation parameters.+The **Controller**  > **Motor Setup**  menu contains all settings related to electric motor operation parameters.
  
 ==== Motor temperature sensor ==== ==== Motor temperature sensor ====
  
-In the menu section **Controller** > **Motor setup** > **Motor t°-sensor** you can select a temperature range in which a smooth power limit will occur (**Delta °t** parameter) and specify the maximum temperature (**°t max**).+In the menu section **Controller**  > **Motor setup**  > **Motor t°-sensor**  you can select a temperature range in which a smooth power limit will occur (**Delta °t**  parameter) and specify the maximum temperature (**°t max**).
  
-{{:en:controller:2_0.8.png?nolink |}}+{{:en:controller:temp_0808.png?nolink|}}
  
-**°t max** — maximum electric motor temperature, in degrees Celsius (°C). Select of values from **50°C** to **200°C**, in increments of **1°C**. \\ +**°t max**  — maximum electric motor temperature, in degrees Celsius (°C). Select of values from **50°C**  to **200°C**, in increments of **1°C**. \\ **Delta °t**  — the temperature value that is deducted from the maximum temperature (**°t max**), the resulting temperature value will be the beginning of the power limit, in degrees Celsius (°C). Select of values from **1°C**  to **100°C**, in increments of **1 °C**.
-**Delta °t**  — the temperature value that is deducted from the maximum temperature (**°t max**), the resulting temperature value will be the beginning of the power limit, in degrees Celsius (°C). Select of values from **1°C** to **100°C**, in increments of **1 °C**. \\+
  
-In the menu item **Sensor type** you can select the following types of temperature sensors that support the controller — **KTY81(82)**, **KTY83**, **KTY84**, **NTC10K (B:3950)**, **NTC10K (B:3380)**, **PT1000**. To disconnect the temperature control, select the value **OFF**.+In the menu item **Sensor type**  you can select the following types of temperature sensors that support the controller — **KTY81(82)**, **KTY83**, **KTY84**, **NTC10K (B:3950)**, **NTC10K (B:3380)**, **PT1000**. To disable the temperature control, select the value **OFF**.
  
-It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, you can check all types of sensors and select the one that displays data the most closely to room temperature. The current measured temperature is displayed at **# Value °t #**. \\+It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, you can check all types of sensors and select the one that displays data the most closely to room temperature. The current measured temperature is displayed at **# Value °t**.
  
-The **# °t R (+-10%)#** menu item displays the resistance of the motor temperature sensor, with an accuracy of +/-10%.+The **# °t resistance**  menu item displays the resistance of the motor temperature sensor, with an accuracy of /-10%.
  
 ==== Clutch ==== ==== Clutch ====
  
-In the menu section **Controller** > **Motor Setup** > **Clutch** you can configure a smooth engine launch for soft engagement clutch or freewheel. Useful for gear motors or mid-drives. At the moment, the setting works well only in the control mode **Torque**, because the clutch there is always engaged. An alternative option is to configure the acceleration limit in the modes **S1**, **S2**, **S3** in the menu section **Controller** > **Advanced modes**.+In the menu section **Controller**  > **Motor Setup**  > **Clutch**  you can configure a smooth engine launch for soft engagement clutch or freewheel. Useful for gear motors or mid-drives. At the moment, the setting works well only in the control mode **Torque**, because the clutch there is always engaged. An alternative option is to configure the acceleration limit in the modes **S1**, **S2**, **S3**  in the menu section **Controller**  > **Advanced modes**.
  
-{{:en:controller:k16_en.png?nolink |}}+{{:en:controller:k16_en.png?nolink&  }}
  
-The parameter **Mode** determines the way of operation:: \\ +The parameter **Mode**  determines the way of operation:: \\ **Accelerate**  — smoothly accelerates the motor until the load appears. \\ **Accelerate and hold**  — in addition to the previous one, it applies weak torque to the motor after the throttle is released, this mode allows you to switch speeds at mid-drive systems without using the pedals.
-**Accelerate** — smoothly accelerates the motor until the load appears. \\ +
-**Accelerate and hold** — in addition to the previous one, it applies weak torque to the motor after the throttle is released, this mode allows you to switch speeds at mid-drive systems without using the pedals. \\+
  
-**# Phase amps** \\  +**# Phase amps** \\ **Start time**  — maximum time for soft start, in seconds (s). Select values from **1s**  to **20s**, in increments of **1s**. \\ **Start current**  — phase motor current at which the load will be detected and the soft start is disabled, in amperes (А). Select values from **0.2А**  to **50.0А**, in increments of **0.2А**. This value must be higher than the phase current for specified acceleration of the motor without load. \\ **Detection time**  — the time during which the load must be present, after which the soft start will be switched off, in milliseconds (ms). Select values from **10 ms**  to **1000 ms**, in increments of **10 ms**. \\ **Acceleration**  — value in volts/seconds (V/s). Select values from **2V/s**  to **1000V/s**, in increments of **2 V/s**. The higher the value, the more you need to specify **Start current**, since the motor will consume more current during acceleration. \\ **Hold (20%)**  and **Hold (80%)**  — two parameters regulating the phase current supplied to the motor in the mode **Accelerate and hold**, in amperes (А). **20%**  — current at low speeds, **80%**  — current at about maximum speed. It is possible to determine the approximate values ​​by the no-load current of the motor. Select values from **0.2А**  to **50.0А**, in increments of **0.2А**. \\ **Hold enable time**  — time through which after the throttle has been pressed, torque hold will become available, in seconds (s). Select values from **1s**  to **120s**, in increments of **4s**.
-**Start time** — maximum time for soft start, in seconds (s). Select values from **1s** to **20s**, in increments of **1s**. \\ +
-**Start current** — phase motor current at which the load will be detected and the soft start is disabled, in amperes (А). Select values from **0.2А** to **50.0А**, in increments of **0.2А**. This value must be higher than the phase current for specified acceleration of the motor without load. \\ +
-**Detection time** — the time during which the load must be present, after which the soft start will be switched off, in milliseconds (ms). Select values from **10 ms** to **1000 ms**, in increments of **10 ms**. \\ +
-**Acceleration** —  value in volts/seconds (V/s). Select values from **2V/s** to **1000V/s**, in increments of **2 V/s**. The higher the value, the more you need to specify **Start current**, since the motor will consume more current during acceleration. \\ +
-**Hold (20%)** and **Hold (80%)** — two parameters regulating the phase current supplied to the motor in the mode **Accelerate and hold**, in amperes (А). **20%** — current at low speeds, **80%** — current at about maximum speed. It is possible to determine the approximate values ​​by the no-load current of the motor. Select values from **0.2А** to **50.0А**, in increments of **0.2А**. \\ +
-**Hold enable time** — time through which after the throttle has been pressed, torque hold will become available, in seconds (s). Select values from **1s** to **120s**, in increments of **4s**. \\+
  
-**Hold time** — the time during which torque will be applied after releasing the throttle, in seconds (s). Select values from **1s** to **120 s**, in increments of **1s**. \\+**Hold time**  — the time during which torque will be applied after releasing the throttle, in seconds (s). Select values from **1s**  to **120 s**, in increments of **1s**.
  
-<WRAP center round tip 60%>\\ Optimal settings for MAC motor: **Accelerate**, 15a, 50V/s, 200ms.</WRAP>+<WRAP center round tip 60%> \\ Optimal settings for MAC motor: **Accelerate**, 15a, 50V/s, 200ms.</WRAP>
  
 +==== Setup the motor position sensors ====
 +
 +Under the menu section **Controller**  > **Motor setup**  > **Position sensors**, you can find the menu items for configuring the position sensors of the electric motor. At the moment, the Controller supports two types of sensors — Hall sensors and a rotation angle sensor (encoder).
 +
 +{{:en:controller:hall_0908.png?nolink& |}}
 +
 +**Sensor type**  — There are currently two types of sensors available: \\
 +**Hall** — Hall sensors. \\
 +**Ecnoder** — rotation angle sensor. \\
 +
 +**Sensor mode**  — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ **Sensorless**  — motor control using BEMF integration, parameter **Integration threshold**  is used. It is rather insensitive to tuning, but more accurate tuning may be required for high-speed motors (such as RC). At the moment, the sensorless does not have a start-up algorithm, it works stably only at some speed. Hall setups start with sensorless mode. \\ **Combined**  — start the motor on Hall sensors, then switch to sensorless mode, the threshold is determined by the parameter radians per second (**rad/s**) in the **From hall to s-less**  menu item. Select of values from **0.00 rad/s**  to **2.00 rad/s**  in increments of **0.05 rad/s**. To convert values keep in mind that 1 rad/s to RPM = 9.5493 RPM. \\ **Sensors**  — electric motor control only by signals from Hall sensors. \\ **Freq**  — frequency control. Do not use this mode for driving!
 +
 +**Interpolate sensors**  — smooth change of the sensors angle based on speed. Used for FOC mode. Select of values **On**  and **Off**.
 +
 +**Interpolation start**  — the motor is always started from a discrete angle, if digital halls are used. After the specified speed, the angle starts to change smoothly. Select of values from **0 rad/s**  to **100 rad/s**, in increments of **1 rad/s**.
 +
 +**Frequency control**  — a separate mode that can be used to power equipment through a transformer or to dry the varnish on the motor windings. Select of values from **10 HZ**  to **200 HZ**, in increments of **1 HZ**.
 ==== Hall sensors setup ==== ==== Hall sensors setup ====
  
-Under the menu section **Controller** > **Motor setup** > **Position sensors**, you can find the menu items for configuring the Hall sensors of the electric motor.+Further in the menu section **Controller**  > **Motor Setup**  > **Position sensor** > **Hall settings** there are items for additional setting of Hall sensors.
  
-=== Manual setup the Hall sensors angles ===+{{:en:controller:hall_setup_0908.png?nolink& |}}
  
-In general, it is not recommended to change these settings manually!\\ +**Hall filter**  — enable or disable the filter in the direction of rotation, select the **Direction**  and **OFF**  values.
-In the menu section **Controller** **Motor settings** **Manual angle setup** you can set up the Hall sensors angles of the electric motor\\+
  
-{{:en:controller:k17_en.png?nolink |}}+**State filter**  — select the delay time, in seconds (sec). Selection of values from **0.000s**  to **1.000s**, in increments of **0.002s**. This delay is used if the wrong value of the Hall sensors is received. All indicators that are less than the set value will be filtered out.
  
-**Offset for square** — additional shift for square wave mode, in degrees (**°**). Select of values from **-30°** to **30°**, in increments of **1°**. \\ +**Direction filter**  — select the delay time for changing the direction of rotation of the electric motor (forward/backward), in seconds (sec). Selection of values from **0.000s**  to **1.000s**, in increments of **0.002s**.
-**Offset total fwd** — shift all Halls sensors by the specified value for the direct rotation of the motor, in degrees (**°**). Select of values from **-60°** to **60°**, in increments of **1°**. \\ +
-**Offset total bkwd** — shift all Halls sensors by the specified value for the reverse rotation of the motor., in degrees (**°**). Select of values from **-60°** to **60°**, in increments of ****. \\+
  
-To shift all the halls, you must press the right button of the On-board computer, enter the shift angle, press the right button again. The value will be reset and the angle of all halls will change to the specified valueYou can change the angle of the hall shift in the opposite direction by setting a negative value\\+The next menu sections shows the Hall indices and Hall angles for the two directions of rotation of the electric motorThese indices are used for the internal operation of the Controller.
  
-**Reset angles** — reset of all Hall sensors angles. Select of values **On** and **Off**. \\ +~~CL~~
-**Integration threshold** — analogue of Hall angles for sensorless engine control mode, in volts (**V**). \\ +
-**Hall adjust Ki** — the meaning of the coefficient is to find the midpoint of the position of the Hall sensors when adjusting them. Values from **0.02** to **5.00**, in increments of **0.02**. If the value of the coefficient is too small, then the tuning process will end before the midpoint is determined. If the value of the coefficient is too large, then the setting will not be completed and will stop by timeout, because the midpoint will not be found due to the angles changing too often.+
  
-=== Hall table ===+==== Manual setup the Hall sensors angles ====
  
-The **Controller** > **Motor Setup** > **Hall table** menu section shows the Hall indices and Hall angles for the two directions of rotation of the electric motor. These indices are used for the internal operation of the Controller. \\ +In general, it is not recommended to change these settings manually! \\ In the menu section **Controller**  > **Motor settings**  > **Manual angle setup**  you can set up the Hall sensors angles of the electric motor.
  
-{{:en:controller:k18_en.png?nolink |}} +{{:en:controller:k17_en.png?nolink&  }}
-~~CL~~ \\+
  
-=== Advanced Hall sensor settings ===+**Offset for square**  — additional shift for square wave mode, in degrees (**°**). Select of values from **-30°**  to **30°**, in increments of **1°**. \\ **Offset total fwd**  — shift all Halls sensors by the specified value for the direct rotation of the motor, in degrees (**°**). Select of values from **-60°**  to **60°**, in increments of **1°**. \\ **Offset total bkwd**  — shift all Halls sensors by the specified value for the reverse rotation of the motor., in degrees (**°**). Select of values from **-60°**  to **60°**, in increments of **1°**.
  
-Further in the menu section **Controller** > **Motor Setup** > **Position sensor** there are items for additional setting of Hall sensors.+To shift all the halls, you must press the right button of the On-board computer, enter the shift angle, press the right button again. The value will be reset and the angle of all halls will change to the specified value. You can change the angle of the hall shift in the opposite direction by setting a negative value.
  
-{{:en:controller:3_0.8.png?nolink |}}+**Reset angles**  — reset of all Hall sensors anglesSelect of values **On**  and **Off**. \\ **Integration threshold**  — analogue of Hall angles for sensorless engine control mode, in volts (**V**). \\ **Hall adjust Ki**  — the meaning of the coefficient is to find the midpoint of the position of the Hall sensors when adjusting them. Values from **0.02**  to **5.00**, in increments of **0.02**. If the value of the coefficient is too small, then the tuning process will end before the midpoint is determined. If the value of the coefficient is too large, then the setting will not be completed and will stop by timeout, because the midpoint will not be found due to the angles changing too often.
  
-**Sensor type** — currently, by default, only one type of **Hall** sensor is available. Additional types of supported sensors will be added in future updates. 
  
-**Sensor mode** — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ +==== Encoder setup ====
-**Sensorless** — motor control using BEMF integration, parameter **Integration threshold** is used. It is rather insensitive to tuning, but more accurate tuning may be required for high-speed motors (such as RC). At the moment, the sensorless does not have a start-up algorithm, it works stably only at some speed. Hall setups start with sensorless mode.\\ +
-**Combined** — start the motor on Hall sensors, then switch to sensorless mode, the threshold is determined by the parameter radians per second (**rad/s**) in the **From hall to s-less** menu item. Select of values from **0.00 rad/s** to **2.00 rad/s** in increments of **0.05 rad/s**. To convert values keep in mind that 1 rad/s to RPM 9.5493 RPM. \\ +
-**Sensors** — electric motor control only by signals from Hall sensors. \\ +
-**Freq** — frequency control. Do not use this mode for driving! \\+
  
-**Interpolate halls** — smooth change of the Hall sensors angle based on speed. Used for FOC modeSelect of values **On** and **Off**. \\+In the menu **Controller** > **Motor Setup** > **Position sensor** > **Encoder settings** there are menu items for configuring the motor encoder. The parameter values in each of the items will appear after passing through the Auto-setup procedureControllers with encoder capable have orange phase wires and an encoder speed of 580kHZ under **Controller** **Device Information**. The wire for connecting the electric motor with the encoder is ordered separately and is installed instead of the wire with connector for the Hall sensors. \\
  
-**Interpolation start** — the motor is always started from discrete angleif digital halls are used. After the specified speed, the angle starts to change smoothlySelect of values from **0 rad/s** to **100 rad/s**, in increments of **1 rad/s**. \\+Wiring and connectors Compatibility: \\ 
 +**Halls** > **Encoder** — if your controller has connector for Hall sensorsthen you can make an adapter for the encoder yourself. Butin this case, you will not be able to move when you turn it on, you will need to push the electric bike with your feet to start\\ 
 +**Encoder** > **Halls** — if your controller has an encoder connector, then you can make an adapter for Hall sensors yourself. Everything will work. \\ 
 + 
 +{{:en:controller:encoder.png?nolink& |}} 
 + 
 +**Steps** — number of encoder steps, selectable in increments of **1**.\\ 
 +**# Invert counter** — select of values **Off** and **On**.\\ 
 +**# Invert PWM** — select of values **Off** and **On**.\\ 
 +**# Index Z** — the value of the additional output signal of the encoder (zero pointer), the choice of values from **0** to **7**, in increments of **1**.\\ 
 +**# Shift Z FW** — signal shift, select of values from **-60°** to **+60°** in increments of **1°**.\\ 
 +**# Shift Z BW** — signal shift, select of values from **-60°** to **+60°** in increments of **1°**.\\ 
 + 
 +== Debug information == 
 +**Index** — encoder index signal value. \\ 
 +**Z-Index** — the value of the zero pointer.\\ 
 +**PWM Period** — PWM signal period, in microseconds (**µs**).\\ 
 +**PWM Width** — PWM signal pulse width, in microseconds (**µs**).\\ 
 +**Rad by index** — position of the electric motor by index, in radians (**rad**).\\ 
 +**Rad by PWM** — position of the electric motor by PWM, in radians (**rad**).\\
  
-**Frequency control** — a separate mode that can be used to power equipment through a transformer or to dry the varnish on the motor windings. Select of values from **10 HZ** to **200 HZ**, in increments of **1 HZ**. \\ 
  
-**Hall filter** — enable or disable the filter in the direction of rotation, select the **Direction** and **OFF** values.\\ 
  
-**State filter** — select the delay time, in seconds (sec). Selection of values from **0.000s** to **1.000s**, in increments of **0.002s**. This delay is used if the wrong value of the Hall sensors is received. All indicators that are less than the set value will be filtered out. \\  
  
-**Direction filter** — select the delay time for changing the direction of rotation of the electric motor (forward/backward), in seconds (sec). Selection of values from **0.000s** to **1.000s**, in increments of **0.002s**. 
  
 ==== Motor parameters ==== ==== Motor parameters ====
  
-Items in the **Controller** > **Motor setup** menu section allow you to configure the parameters of the electric motor.+Items in the **Controller**  > **Motor setup**  menu section allow you to configure the parameters of the electric motor.
  
-{{:en:controller:8_0.8.png?nolink |}}+{{:en:controller:mtpa.png?nolink|}}
  
-**Pole pair** — the number of pole pairs of the stator winding of the electric motor determines the speed at which the motor shaft will rotate. This parameter is used to calculate RPM and speed. For a more accurate autodetection of the Hall sensors angles, you must specify the correct value for the number of pole pairs for your motor. For the most popular motors, you can see this value in the table **[[en:motor_information|Motor Information]]**. If your motor is not listed in the table, check with the manufacturer for the number of pole pairs. \\+**Pole pair**  — the number of pole pairs of the stator winding of the electric motor determines the speed at which the motor shaft will rotate. This parameter is used to calculate RPM and speed. For a more accurate autodetection of the Hall sensors angles, you must specify the correct value for the number of pole pairs for your motor. For the most popular motors, you can see this value in the table **[[:en:motor_information|Motor Information]]**. If your motor is not listed in the table, check with the manufacturer for the number of pole pairs.
  
-**Spin direction** — this setting allows you to change the direction of rotation of the electric motor. Select of values **Forward** and **Invert**. Or you can swap two motor phases to change the direction of rotation.\\+**Spin direction**  — this setting allows you to change the direction of rotation of the electric motor. Select of values **Forward**  and **Invert**. Or you can swap two motor phases to change the direction of rotation.
  
-**Integration thr.** — the analog of Hall sensors angles for sensorless motor control mode, in volts (**V**). \\+**Integration thr.**  — the analog of Hall sensors angles for sensorless motor control mode, in volts (**V**).
  
-**Control mode** — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ +**Control mode**  — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ **Off**  — control mode is disabled. \\ **Square**  — outdated control method used only for motor detection. \\ **FOC**  — field-oriented control of the motor. \\ **DC-DC**  — charging mode when you use the controller in motor charging mode.
-**Off** — control mode is disabled.\\ +
-**Square** — outdated control method used only for motor detection. \\ +
-**FOC** — field-oriented control of the motor. \\ +
-**DC-DC** — charging mode when you use the controller in motor charging mode. \\+
  
-The control mode selected in this menu is the priority setting for the controller. If the Hall sensor mode is selected in the **Controller** > **Motor setup** > **Position sensor** menu, which does not correspond to the set operating mode of the electric motor, then this Hall sensor mode will be automatically replaced with a more suitable one.+The control mode selected in this menu is the priority setting for the controller. If the Hall sensor mode is selected in the **Controller**  > **Motor setup**  > **Position sensor**  menu, which does not correspond to the set operating mode of the electric motor, then this Hall sensor mode will be automatically replaced with a more suitable one.
  
-**Max motor U** — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter is not needed. Select of values from **0V** to **100V**, in increments of **1V**. \\+**Max motor U**  — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter is not needed. Select of values from **0V**  to **100V**, in increments of **1V**.
  
-**kV** — motor parameter, electric revolutions per volt (**eRPM/V**). \\+**kV**  — motor parameter, electric revolutions per volt (**eRPM/V**).
  
-Next are the menu items for configuring the MTPA, this function allows you to introduce a negative id current to increase the torque on the IPM motors. +Next are the menu items for configuring the MTPA, this function allows you to introduce a negative id current to increase the torque on the IPM motors.
  
-**Phase resistance** — the result of measuring the phase resistance of the electric motor during auto-setup (menu item **Motor LR**), in Ohms (Ohm). \\+**Phase resistance**  — the result of measuring the phase resistance of the electric motor during auto-setup (menu item **Motor LR**), in Ohms (Ohm).
  
-**Inductance d** — the result of measuring the inductance of the electric motor along the d axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The d-axis ("straight") refers to the component of the stator magnetic field that is in phase with the rotor magnetic field. \\+**Inductance d**  — the result of measuring the inductance of the electric motor along the d axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The d-axis ("straight") refers to the component of the stator magnetic field that is in phase with the rotor magnetic field.
  
-**Inductance q** — the result of measuring the inductance of the electric motor along the q axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The q-axis ("quadrature") refers to the component of the stator magnetic field that is 90 ° out of phase with the rotor magnetic field. \\+**Inductance q**  — the result of measuring the inductance of the electric motor along the q axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The q-axis ("quadrature") refers to the component of the stator magnetic field that is 90 ° out of phase with the rotor magnetic field.
  
-**Flux linkage** — is the total magnetic flux permeating the electrical circuit, in Weber (Wb). \\+**Flux linkage**  — is the total magnetic flux permeating the electrical circuit, in Weber (Wb).
  
-**# Square wave settings:** \\ +**MTPA (IPM Motor)** — enable (**On**) the MTPA function for IPM motorfor all other motors this function must be disabled (**Off**). 
-**Square offset** — additional shift for square wave mode, in degrees (°). Select of values from -30° to 30°, in increments of 1°. This item is similar to the same item in the menu **Controller** > **Motor setup** > **Position sensor** > **Manual angle setup**. \\ +
-**Boost square current** — in the sensorless or square mode, applies 100% PWM at the beginning of each winding switch. Starting from specified speed and minimum requested current. Select of values **On** and **Off**. \\ +
-**Boost current** — setting refers to the control mode **Square**, the minimum current from which the rapid current pumping in the windings is turned on, in amperes (**А**). Select of values from **0A** to **100A**, in increments of **1A**. \\ +
-**Boost speed** — setting refers to the control mode **Square**the minimum speed after which the rapid pumping of current in the windings is turned on, in radians per second (**rad/s**). Select of values from **0.00rad/s** to **2.00rad/ms** in increments of **0.05rad/s**. \\+
  
 +**# Square wave settings:** \\ **Square offset**  — additional shift for square wave mode, in degrees (°). Select of values from -30° to 30°, in increments of 1°. This item is similar to the same item in the menu **Controller**  > **Motor setup**  > **Position sensor**  > **Manual angle setup**. \\ **Boost square current**  — in the sensorless or square mode, applies 100% PWM at the beginning of each winding switch. Starting from specified speed and minimum requested current. Select of values **On**  and **Off**. \\ **Boost current**  — setting refers to the control mode **Square**, the minimum current from which the rapid current pumping in the windings is turned on, in amperes (**А**). Select of values from **0A**  to **100A**, in increments of **1A**. \\ **Boost speed**  — setting refers to the control mode **Square**, the minimum speed after which the rapid pumping of current in the windings is turned on, in radians per second (**rad/s**). Select of values from **0.00rad/s**  to **2.00rad/ms**  in increments of **0.05rad/s**.
  
 ===== Battery ===== ===== Battery =====
  
-In the **Controller** > **Battery** menu section you can set up the parameters of the battery connected to the Controller. The Nucular controllers support supply voltages from **20V** to **90V**, this is **21S** for Lithium-ion (Li-ion) batteries and **25S** for Lithium-iron-phosphate (LiFePO4) batteries. To configure the battery, you must specify the range of supply voltage and current. To correctly display the battery capacity on the On-board computer screen and correctly calculate the remaining charge, you must specify the battery capacity in [[en:display:start#battery_capacity|settings]] of On-board Computer.+In the **Controller** > **Battery** menu section you can set up the parameters of the battery connected to the Controller. The Nucular controllers support supply voltages from **20V** to **90V**, this is **21S** for Lithium-ion (Li-ion) batteries and **25S** for Lithium-iron-phosphate (LiFePO4) batteries. To configure the battery, you must specify the range of supply voltage and current. To correctly display the battery capacity on the On-board computer screen and correctly calculate the remaining charge, you must specify the battery capacity in [[:en:display:start#battery_capacity|settings]] of On-board Computer. If you use several batteries with different parameters on the same bike, you can save the configurations for each battery on the SD card and load them after replacing the battery. The SD card can be stored in the On-board computer.
  
-{{:en:controller:k20_en.png?nolink |}}+{{:en:controller:k20_en.png?nolink&  }}
  
-**Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, in volts (**dV**). This setting resets the **From charge statistics** when the Controller is turned on. Select values from **0.00 dV** to **10.00 dV**, in increments of **0.3 dV**.  \\+**Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, in volts (**dV**). This setting resets the **From charge statistics** when the Controller is turned on. Select values from **0.00 dV** to **10.00 dV**, in increments of **0.3 dV**.
  
-**Supply max** and **Supply min** — battery voltage range, in volts (**V**). Select values from **20.00V** to **95.00V**, in increments of **00.1V**. Also, these settings are used for the **Converter** mode. \\+**Supply max** and **Supply min** — battery voltage range, in volts (**V**). Select values from **20.00V** to **95.00V**, in increments of **0.1V**. Also, these settings are used for the **Converter** mode.
  
-For lithium-ion (Li-ion) batteries, the minimum can be considered **2.8V*S**, the maximum **4.2V*S**. \\ +For lithium-ion (Li-ion) batteries, the minimum can be considered **2.8V*S**, the maximum **4.2V*S**.\\
 For lithium-iron-phosphate (LiFePO4)-minimum **2.7V*S**, maximum **3.6V*S**. \\ For lithium-iron-phosphate (LiFePO4)-minimum **2.7V*S**, maximum **3.6V*S**. \\
  
-<WRAP center round important 60%> +<WRAP center round important 60%> We guarantee stable operation of the Controller at voltages up to **90V** inclusive. Using a battery over 90V may damage the Controller and void the warranty. </WRAP> \\
-We guarantee stable operation of the Controller at voltages up to **90V** inclusive. Using a battery over 90V may damage the Controller and void the warranty. +
-</WRAP>\\+
  
 +**Charge max** — maximum battery charging current, during regeneration or in **Converter** mode, in amperes (**А**). Select values from **1.0A** to **400.0А**, in increments of **0.5А**.
  
-**Charge max** — maximum battery charging current, during regeneration or in **Converter** mode, in amperes (**А**). Select values from **1.0A** to **400.0А**, in increments of **0.5А**.  \\+**Discharge max** — maximum continuous discharge current of the batterybut in boost mode, it can be more, check (Throttle control mode setup.), in amperes (**А**). Select values from **1.0A** to **400.0А**, in increments of **0.5А**.
  
-**Discharge max** — maximum continuous discharge current of the battery, but in boost mode, it can be more, check (Throttle control mode setup.), in amperes (**А**). Select values from **1.0A** to **400.0А**, in increments of **0.5А**.  \\ +**Power max** — maximum continuous discharge power, in watts (**W**). Set 0W to deactivate power limit. Select values from **0W** to **30000 W**, in increments of **100W**.
- +
-**Power max** — maximum continuous discharge power, in watts (**W**). Set 0W to deactivate power limit. Select values from **0W** to **30000 W**, in increments of **100W**.  \\+
  
 **# DC voltage** — current supply voltage of the Controller, in volts (**V**). **# DC voltage** — current supply voltage of the Controller, in volts (**V**).
 +
  
 ===== Converter ===== ===== Converter =====
  
-In the menu section **Controller** > **Converter**, can configure charging mode from the power supply through the motor. Charging through the inductor is not currently supported. For the power supply connection diagram, see this [[hhttps://drive.google.com/file/d/1KkEgWcJ5U-AEkk6GrXhDNlYXFCcsjpUQ/view|link]].+In the menu section **Controller**  > **Converter**, can configure charging mode from the power supply through the motor. Charging through the inductor is not currently supported. For the power supply connection diagram, see this [[en:controller:setup#connection_diagram|link]].
  
-{{:en:controller:k21_en.png?nolink |}}+{{:en:controller:k21_en.png?nolink&  }}
  
-**Enable** — turn on the converter mode and start charging. Select of values **On** and **Off**. \\+**Enable**  — turn on the converter mode and start charging. Select of values **On**  and **Off**.
  
-**Auto-enable** — allows the automatic start of charging when the charging PSU is connected to the controller. Select of values **On** and **Off**. \\+**Auto-enable**  — allows the automatic start of charging when the charging PSU is connected to the controller. Select of values **On**  and **Off**.
  
-**Detection threshold** — minimum voltage on phases when charger mode activates, also disables motor control, in volts per phase (**Vph**). Select of values from **10Vph** to **80Vph**, in increments of **1Vph**. \\+**Detection threshold**  — minimum voltage on phases when charger mode activates, also disables motor control, in volts per phase (**Vph**). Select of values from **10Vph**  to **80Vph**, in increments of **1Vph**.
  
-**Battery max I** — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select of values from **0.0А** to **100.0A**, in increments of **0.5А**. \\+**Battery max I**  — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select of values from **0.0А**  to **100.0A**, in increments of **0.5А**.
  
-**Battery min I** — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values from **0.5А** to **10.0A**, in increments of **0.5А**. \\+**Battery min I**  — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values from **0.5А**  to **10.0A**, in increments of **0.5А**.
  
-**Undercharge** — voltage relative to maximum battery voltage setup, in volts (**V**). Let's decrease the full charge voltage. Select of values from **0.00V** to **10.0V**, in increments of **0.1V**. \\+**Undercharge**  — voltage relative to maximum battery voltage setup, in volts (**V**). Let's decrease the full charge voltage. Select of values from **0.00V**  to **10.0V**, in increments of **0.1V**.
  
-**Current drop delta** — decreases charging current down to **Battery min I** as the battery reaches maximum voltage on specified voltage range, in volts (**dV**). Select of values from **0.0dV** to **20.0 dV** in increments of **0.5 dV**.+**Current drop delta**  — decreases charging current down to **Battery min I**  as the battery reaches maximum voltage on specified voltage range, in volts (**dV**). Select of values from **0.0dV**  to **20.0 dV**  in increments of **0.5 dV**.
  
-**Supply max I** — maximum power supply current, in amperes (**А**). Select of values from **2.0 A** to **150.0 A**, in increments of **0.5 A**.+**Supply max I**  — maximum power supply current, in amperes (**А**). Select of values from **2.0 A**  to **150.0 A**, in increments of **0.5 A**.
  
-**Supply drop U** — allowable voltage drop on wires or power supply, in volts (**V**). Select of values from **0.50 V** to **10.00 V**, in increments of **0.25 V**. \\+**Supply drop U**  — allowable voltage drop on wires or power supply, in volts (**V**). Select of values from **0.50 V**  to **10.00 V**, in increments of **0.25 V**.
  
-**Max motor t°** — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select of values from **50°C** to **120°C**, in increments of **5°C**. \\+**Max motor t°**  — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select of values from **50°C**  to **120°C**, in increments of **5°C**.
  
-Below in the menu section, through the **#** sign, the real-time values of voltages and currents are shown: \\ +Below in the menu section, through the **#**  sign, the real-time values of voltages and currents are shown: \\ **# Battery I** \\ **# Battery U** \\ **# Supply I** \\ **# Supply U**
-**# Battery I** \\ +
-**# Battery U** \\ +
-**# Supply I** \\ +
-**# Supply U** \\+
  
 After plugging in the power supply, the On-board Computer will display the battery charging process. After plugging in the power supply, the On-board Computer will display the battery charging process.
  
-{{{:ru:controller:charging.png?nolink |}} **Indication to the right:**\\ +{{:ru:controller:charging.png?nolink&  }}**Indication to the right:** \\ **-22.1A**  — information line parameter, depending on the On-Board Computer settings. \\ **0:0:58**  — time elapsed since charging started, hours, minutes, seconds. \\ **I24.9**  — charging current, in Amperes (**A**). \\ **U53.7**  — charging voltage, in Volts (**V**).
-**-22.1A** — information line parameter, depending on the On-Board Computer settings. \\ +
-**0:0:58** — time elapsed since charging started, hours, minutes, seconds. \\  +
-**I24.9** — charging current, in Amperes (**A**). \\ +
-**U53.7** — charging voltage, in Volts (**V**). \\+
  
-**The indication in the middle** is the temperature of the motor and the controller, respectively, in degrees Celsius (**°C**).+**The indication in the middle**  is the temperature of the motor and the controller, respectively, in degrees Celsius (**°C**).
  
-**Indication to the left:** \\ +**Indication to the left:** \\ **59.0V**  — information line parameter, depending on the On-Board Computer settings. \\ **15Wh**  — the battery capacity in Watt hours (**Wh**). \\ **100%**  — the battery level, in percent (**%**). \\ **I24.9**  — the battery current, in Amperes (**A**). \\ **U53.7**  — the battery voltage, in Volts (**V**).
-**59.0V** — information line parameter, depending on the On-Board Computer settings. \\ +
-**15Wh** — the battery capacity in Watt hours (**Wh**). \\ +
-**100%** — the battery level, in percent (**%**). \\ +
-**I24.9** — the battery current, in Amperes (**A**). \\ +
-**U53.7** — the battery voltage, in Volts (**V**). \\+
  
- +~~CL~~
-~~CL~~ \\+
  
 ===== I/O port configuration ===== ===== I/O port configuration =====
  
-In the **Controller** > **I/O configuration** menu section, you can configure the ports functions. The controller has eight digital ports that can be configured for different functions — **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M**. See section **[[en:controller:setup#connection_diagram|Connection diagram]]**. \\+In the **Controller**  > **I/O configuration**  menu section, you can configure the ports functions. The controller has eight digital ports that can be configured for different functions — **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M**. See section **[[:en:controller:setup#connection_diagram|Connection diagram]]**.
  
-Sixteen CAN ports are additionally available **CAN port 1** - **CAN port 16**, the signal source for which can be configured on the On-board computer or uLight. These are software values, there are fewer physical inputs on the boards, at the moment there are eight CAN ports **IO1** - **IO8** available in the On-board computer plus four Hotkeys (buttons on the On-board computer). In the future, six CAN ports ** I1 ** - ** I6 ** will be added to the uLight board. \\+Sixteen CAN ports are additionally available **CAN port 1**  - **CAN port 16**, the signal source for which can be configured on the On-board computer or uLight. These are software values, there are fewer physical inputs on the boards, at the moment there are eight CAN ports **IO1**  - **IO8**  available in the On-board computer plus four Hotkeys (buttons on the On-board computer). In the future, six CAN ports ** I1 **  - ** I6 **  will be added to the uLight board.
  
-{{:en:controller:k23_en.png?nolink |}}+{{:en:controller:ports_en.png?nolink|}} 
 + 
 +In the section **Controller**  > **I/O configuration**  > **Port state**, you can check input activation when contact shorted to GND. When a signal is applied, the value will change from **Off**  to **On**. Below in the menu items **# Throttle**  and **# Brake**  you can see the voltage on the throttle and brake levers, respectively. \\ 
 + 
 +If the controls are connected to the On-board computer, then it is necessary to check the activation when contact shorted to GND in the **On-board computer** > **Information** [[en:display:start#information|menu]]. 
  
-In the section **Controller** > **I/O configuration** > **Port state**, you can check input activation when contact shorted to GND. When a signal is applied, the value will change from **0** to **1**. Below in the menu items **# Throttle** and **# Brake** you can see the voltage on the throttle and brake levers, respectively. 
 ~~CL~~ \\ ~~CL~~ \\
  
-In the item ** Controller **> **I/O configuration** > **Speeds mode** you can select the method for switching additional modes **S1**, **S2**, **S3** for inputs in the Controller or CAN inputs - **Switch** or **Buttons**. \\ 
  
-{{:en:controller:k24_en.png?nolink |}}+In the item ** Controller **> **I/O configuration**  > **Speeds mode**  you can select the method for switching additional modes **S1**, **S2**, **S3**  for inputs in the Controller or CAN inputs - **Switch**  or **Buttons**\\
  
-Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M** and CAN ports **CAN port 1** - **CAN port 16**\\ +{{:en:controller:k24_en.png?nolink&  }}
-**OFF** — disable port\\ +
-**RV** — reverse. \\ +
-**CRe** — enable cruise. \\ +
-**CR+** — increment cruise speed (when cruise is active). \\ +
-**CR-** —  decrement cruise speed (when cruise is active). \\ +
-**CRr** — restore last saved cruise speed with button, activated only above min cruise speed. \\ +
-**BK** — brake button. \\ +
-**DM** — disable motor (disable throttle, brake and PAS). \\ +
-**DTH** — disable throttle. \\ +
-**DPAS** — disable PAS. \\ +
-**SWSNS** — input for Gearsensor to reduce motor torque (WIP). In development. \\ +
-**N** — activates the neutral mode forcibly, resets speed mode counter if used. If neutral is activated by default, you need to change speed mode again to exit neutral. \\ +
-**nBK** — inverted brake button input, activates the brake when the contact is opened. \\ +
-**S1** — speed 1. \\ +
-**S2** — speed 2. \\ +
-**S3** — speed 3. \\ +
-**S1of3** — speed 1 for 3-position switch. \\ +
-**S3of3** — speed 3 for 3-position switch. \\ +
-**Scyc** — cycle speed mode, sequential switching with one button. \\ +
-**S++** — increment speed, switching the speed from low to high with one button. \\ +
-**S--** — decrement speedи, switching the speed from high to low with one button. \\ +
-**SPSNS** — input for external speed sensor. \\ +
-**Spec.** — special port function (like PWM or PAS). \\+
  
-Further in the menu, there are items for configuring the PWM outputs.  +Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M**  and CAN ports **CAN port 1**  - **CAN port 16**: \\ **OFF**  — disable port. \\ **RV**  — reverse. \\ **CRe**  — enable cruise. \\ **CR **  — increment cruise speed (when cruise is active). \\ **CR-**  — decrement cruise speed (when cruise is active). \\ **CRr**  — restore last saved cruise speed with button, activated only above min cruise speed. \\ **BK**  — brake button. \\ **DM**  — disable motor (disable throttle, brake and PAS). \\ **DTH**  — disable throttle. \\ **DPAS**  — disable PAS. \\ **SWSNS**  — input for Gearsensor to reduce motor torque (WIP). In development. \\ **N**  — activates the neutral mode forcibly, resets speed mode counter if used. If neutral is activated by default, you need to change speed mode again to exit neutral. \\ **nBK**  — inverted brake button input, activates the brake when the contact is opened. \\ **S1**  — speed 1. \\ **S2**  — speed 2. \\ **S3**  — speed 3. \\ **S1of3**  — speed 1 for 3-position switch. \\ **S3of3**  — speed 3 for 3-position switch. \\ **Scyc**  — cycle speed mode, sequential switching with one button. \\ **S++ **  — increment speed, switching the speed from low to high with one button. \\ **S--**  — decrement speedи, switching the speed from high to low with one button. \\ **SPSNS**  — input for external speed sensor. \\  
-~~CL~~ \\ +**Spec.**  — special port function (like PWM or PAS). \\ 
-==== PWM output setup  ====+**CL1**-**CL5** — instant configuration import by pressing the CAN button (up to five different configurations). For correct import, the function number must match the number in the name of your configuration file. For example, a **CL3** function would correspond to a file called **ncconf3.cfg**. 
 + 
 +Further in the menu, there are items for configuring the PWM outputs. 
 + 
 +~~CL~~ 
 + 
 +==== PWM output setup ====
  
-To activate the **PWM P1** or **PWM P2** output, the **Controller** > **Port Setup** menu should be set to **Spec.** mode and **PAS** disabled. \\+To activate the **PWM P1**  or **PWM P2**  output, the **Controller**  > **Port Setup**  menu should be set to **Spec.**  mode and **PAS**  disabled.
  
-**PWM freq** — selection of frequency of additional PWM output on ports **P1/P2**. Select of values PWM frequency — **100Hz**, **500Hz**, **1kHz**, **5kHz**, **10kHz**, **24kHz (FAN)**. For a conventional light bulb, large values are not needed. Select the frequency **100Hz**, this will be enough to avoid flickering. The high frequency marked ** FAN ** is used to control the fan, this is their standard frequency. \\+**PWM freq**  — selection of frequency of additional PWM output on ports **P1/P2**. Select of values PWM frequency — **100Hz**, **500Hz**, **1kHz**, **5kHz**, **10kHz**, **24kHz (FAN)**. For a conventional light bulb, large values are not needed. Select the frequency **100Hz**, this will be enough to avoid flickering. The high frequency marked ** FAN **  is used to control the fan, this is their standard frequency.
  
-**PWM P1** and **PWM Р2** — selection of operating modes: \\ +**PWM P1**  and **PWM Р2**  — selection of operating modes:
-  * **Disabled** — mode not selected. \\ +
-  * **Stop-light** — activated when the brake is pressed. \\ +
-  * **Headlight** — activated when the controller is enabled. \\ +
-  * **t°C motor** — activated beyond the two deltas of the motor temperature, as the motor heats up will increase the PWM duty ( Delta °t set up on menu **Controller** > **Motor setup** > **Motor t°-sensor**). \\ +
-  * **t°C controller** — activated from 40°С, maximum value at 80°С temperature of the Controller. \\+
  
-**PWM Pn Min** / **Max** — indicates the output range of the PWM (duty), select of values from **0%** to **100%**, in increments **1%**. \\ +  * **Disabled**  — mode not selected. 
-**PWM Pn t° Min** / **t° Max** — selection of motor or controller temperature,  select of values from **0°С** to **100°С**, in increments **1°С**.+  * **Stop-light**  — activated when the brake is pressed. 
 +  * **Headlight**  — activated when the controller is enabled. 
 +  * **t°C motor**  — activated beyond the two deltas of the motor temperature, as the motor heats up will increase the PWM duty ( Delta °t set up on menu **Controller**  > **Motor setup**  > **Motor t°-sensor**). 
 +  * **t°C controller**  — activated from 40°С, maximum value at 80°С temperature of the Controller. 
 +**PWM Pn Min**  / **Max**  — indicates the output range of the PWM (duty), select of values from **0%**  to **100%**, in increments **1%**. \\ **PWM Pn t° Min**  / **t° Max**  — selection of motor or controller temperature, select of values from **0°С**  to **100°С**, in increments **1°С**.
  
 ===== Extra parameters ===== ===== Extra parameters =====
  
-In the menu section **Controller** > **Extra parameters** you can set up various additional settings of the Controller.+In the menu section **Controller**  > **Extra parameters**  you can set up various additional settings of the Controller.
  
 ==== The power button and auto shutdown ==== ==== The power button and auto shutdown ====
  
-The controller power button is located on the back of the On-Board Computer. In the **Controller** > **Extra parameters** > **Disable button** menu item, you can select the way to turn on/off the Controller, which turns on when it is powers-up or the button contacts are closed. In the off mode, the controller consumes about 100 μA, so if you reconnect the power supply without discharging the capacitors, the controller may not start. \\+The controller power button is located on the back of the On-Board Computer. In the **Controller**  > **Extra parameters**  > **Disable button**  menu item, you can select the way to turn on/off the Controller, which turns on when it is powers-up or the button contacts are closed. In the off mode, the controller consumes about 100 μA, so if you reconnect the power supply without discharging the capacitors, the controller may not start.
  
-{{:en:controller:k25_en.png?nolink |}}+{{:en:controller:k25_en.png?nolink&  }}
  
-Selecting modes for **Disable button**: \\ +Selecting modes for **Disable button**: \\ **None**  — the controller turns on when it is power-up up or when the power button is closed, does not turn off. \\ **Switch**  — the controller turns on when the power button is closed (when EN shorted to GND), turns off when it opens. \\ **Button**  — the controller turns on the button on the On-Board Computer, press it for 2 seconds, and release, to disable it, press and hold the button again. \\ **CAN**  — the controller turns on when it is powers-up or the button contacts shorts, disables only when another device on CAN bus will send a request to disable. This function is used when there are several controllers on a system, where one of them is set to button or switch mode, and the other in CAN mode.
-**None** — the controller turns on when it is power-up up or when the power button is closed, does not turn off. \\ +
-**Switch** — the controller turns on when the power button is closed (when EN shorted to GND), turns off when it opens. \\ +
-**Button** — the controller turns on the button on the On-Board Computer, press it for 2 seconds, and release, to disable it, press and hold the button again. \\ +
-**CAN** — the controller turns on when it is powers-up or the button contacts shorts, disables only when another device on CAN bus will send a request to disable. This function is used when there are several controllers on a system, where one of them is set to button or switch mode, and the other in CAN mode. \\+
  
-**Auto shutdown** — activation of the controller shutdown function after a while if the motor does not spin. Select of values **On** and **Offл**. The shutdown time is set in item **Sleep time**. \\+**Auto shutdown**  — activation of the controller shutdown function after a while if the motor does not spin. Select of values **On**  and **Offл**. The shutdown time is set in item **Sleep time**.
  
-**Sleep time** — selection of the controller shutdown time when the **Auto shutdown** function is activated, in seconds, (**s**). Select of values from **30s** to **1500s**, in increments of **5s**. \\+**Sleep time**  — selection of the controller shutdown time when the **Auto shutdown**  function is activated, in seconds, (**s**). Select of values from **30s**  to **1500s**, in increments of **5s**.
  
-**Lock at turn-on** — the function locks controller inputs when enabled until the password is entered on the On-Board Computer, if there is no On-Board Computer, enabling this setting will permanently lock the controller.+**Lock at turn-on**  — the function locks controller inputs when enabled until the password is entered on the On-Board Computer, if there is no On-Board Computer, enabling this setting will permanently lock the controller.
  
 ==== Speedometer setup ==== ==== Speedometer setup ====
  
-The next block of settings in the menu section **Controller** > **Extra parameters** refers to the speed calculation setting. If you use an external speed sensor connected to the On-board computer, you need to configure it in menu **[[en:display:start#data_sources_setup|Data source setup]]**.+The next block of settings in the menu section **Controller**  > **Extra parameters**  refers to the speed calculation setting. If you use an external speed sensor connected to the On-board computer, you need to configure it in menu **[[:en:display:start#data_sources_setup|Data source setup]]**.
  
-{{:en:controller:k26_en.png?nolink |}}+{{:en:controller:k26_en.png?nolink&  }}
  
-**Speed calculation** — enabling speed calculation in the Controller. Useful for multi-motor configurations, you can turn off the speed calculation on some motors. Select of values **On** and **Off**. \\+**Speed calculation**  — enabling speed calculation in the Controller. Useful for multi-motor configurations, you can turn off the speed calculation on some motors. Select of values **On**  and **Off**.
  
-**Circumference** — wheel circumference, in millimeters (mm). Select of values from **0mm** to **3000mm**, in increments of **5mm**. To calculate the circumference, you can use [[https://www.omnicalculator.com/math/circumference|online calculator]]. \\+**Circumference**  — wheel circumference, in millimeters (mm). Select of values from **0mm**  to **3000mm**, in increments of **5mm**. To calculate the circumference, you can use [[https://www.omnicalculator.com/math/circumference|online calculator]].
  
-**Motor sprocket** — this setting specifies the number of sprocket teeth on the motor (notional), which allows you to set the gear ratio from motor shaft to the wheel. Also, this setting can be used as a reduction ratio for gear motors. \\+**Motor sprocket**  — this setting specifies the number of sprocket teeth on the motor (notional), which allows you to set the gear ratio from motor shaft to the wheel. Also, this setting can be used as a reduction ratio for gear motors.
  
-**Wheel sprocket** — the number of teeth of the wheel sprocket, similar to the setting **Motor sprocket**. \\+**Wheel sprocket**  — the number of teeth of the wheel sprocket, similar to the setting **Motor sprocket**.
  
-If you have a wheel motor, then in the section **Controller** > **Motor setup** you need to specify the number of **Pole pair** (divide the number of magnets by two). For gear motors or mid-drives, it is recommended to install an external speed sensor that connects to the Onboard computer or to any of the controller ports.+If you have a wheel motor, then in the section **Controller**  > **Motor setup**  you need to specify the number of **Pole pair**  (divide the number of magnets by two). For gear motors or mid-drives, it is recommended to install an external speed sensor that connects to the Onboard computer or to any of the controller ports.
  
 ==== Master-controller ==== ==== Master-controller ====
  
-{{:en:controller:k27_en.png?nolink |}} +{{:en:controller:k27_en.png?nolink&  }}In the menu section **Controller**  > **Extra parameters**  > **Master-controller**  you can enable the function of controlling other controllers from the current one. This setting is suitable for multi-motor configurations where control (throttle, brake and etc.) is connected into one of the controllers directly. 
-In the menu section **Controller** > **Extra parameters** > **Master-controller** you can enable the function of controlling other controllers from the current one. This setting is suitable for multi-motor configurations where control (throttle, brake and etc.) is connected into one of the controllers directly. + 
-~~CL~~ \\+~~CL~~
  
 ==== Other settings ==== ==== Other settings ====
  
-{{:en:controller:4_0.8.png?nolink |}} +{{:en:controller:4_0.8.png?nolink&  }}**Limit t° CPU**  — limiting the temperature of the processor, in degrees Celsius (**°C**). When the specified threshold is reached, the phase current will be limited. Select of values from **60°C**  to **105°C**, in increments of **5°C**.
-**Limit t° CPU** — limiting the temperature of the processor, in degrees Celsius (**°C**). When the specified threshold is reached, the phase current will be limited. Select of values from **60°C** to **105°C**, in increments of **5°C**. \\+
  
-**Device ID** — setting the Controller number in the CAN network. This number is displayed in the menu section **Settings** > **Devices** in front of each device that is connected to the network using the [[en:levcan|LEVCAN protocol]]. If, by default, your device number is **0**, we recommend changing it to another number for the correct firmware update.+**Device ID**  — setting the Controller number in the CAN network. This number is displayed in the menu section **Settings**  > **Devices**  in front of each device that is connected to the network using the [[:en:levcan|LEVCAN protocol]]. If, by default, your device number is **0**, we recommend changing it to another number for the correct firmware update.
  
-**Prefix 1** and **Prefix 2** — controller name setting for multi-motor configurations. Using the prefixes together or separately, you can specify where the electric motor that the Controller controls is located. The selectable values for each prefix are **None**, **Front**, **Rear**, **Left**, **Right**. To save the setting, go to the **Controller** > **Save settings** menu item and select **On**, then restart the controller. The prefix will now appear in front of the controller name in the **Devices** menu. \\+**Prefix 1**  and **Prefix 2**  — controller name setting for multi-motor configurations. Using the prefixes together or separately, you can specify where the electric motor that the Controller controls is located. The selectable values for each prefix are **None**, **Front**, **Rear**, **Left**, **Right**. To save the setting, go to the **Controller**  > **Save settings**  menu item and select **On**, then restart the controller. The prefix will now appear in front of the controller name in the **Devices**  menu.
  
-For example, you have a 2WD scooter and two 12F controllers, you need to distinguish them somehow in the **Devices** menu for easy setup. A controller for a front motor can be prefixed with **Front**, in which case the controller will be named **Front Nucular controller** in the **Devices** menu. \\+For example, you have a 2WD scooter and two 12F controllers, you need to distinguish them somehow in the **Devices**  menu for easy setup. A controller for a front motor can be prefixed with **Front**, in which case the controller will be named **Front Nucular controller**  in the **Devices**  menu.
  
-If you are using a 3WD drive or more, then both prefixes must be used for the controller name. For example, if the controller is driving a rear right motor, the setting will look like this: **Prefix 1** — **Rear**, **Prefix 2** — **Right**. \\+If you are using a 3WD drive or more, then both prefixes must be used for the controller name. For example, if the controller is driving a rear right motor, the setting will look like this: **Prefix 1**  — **Rear**, **Prefix 2**  — **Right**.
  
 ===== PID regulators ===== ===== PID regulators =====
  
-In the **Controller** > **PID regulators** menu section, various signals of proportional-integral-derivative (PID) regulators are configured - devices in the control loop with feedback used in automatic control systems to generate a control signal in order to obtain the required accuracy and the quality of the transition process. **Settings for advanced users**. \\ +In the **Controller**  > **PID regulators**  menu section, various signals of proportional-integral-derivative (PID) regulators are configured - devices in the control loop with feedback used in automatic control systems to generate a control signal in order to obtain the required accuracy and the quality of the transition process. **Settings for advanced users**.
  
-{{:en:controller:k28_en.png?nolink |}} +{{:en:controller:k28_en.png?nolink&  }}Two or three coefficients are used for the settings of each regulator: \\ **Ki**  — integral coefficient. \\ **Кp**  — proportional coefficient. \\ **Kd**  — differentiating coefficient
-Two or three coefficients are used for the settings of each regulator: \\ + 
-**Ki** — integral coefficient. \\  +**Square Ki, Kp**  — phase current regulator for a square wave. \\ **FOC Ki, Kp**  — phase current regulator for FOC mode. \\ **FW Ki, Kp**  — field weakening coefficients. \\ **DCv Ki, Kp**  — voltage regulator on the DC bus. \\ **DCi Ki, Kp**  — current regulator on the DC bus. \\ **DCw Ki, Kp**  — power calculator. \\ **Speed Ki, Kp, Kd**  — speed regulator for throttle control modes **Speed**  and **Speed torque**. \\ **PLL Ki, Kp**  — speed regulator for motor angle interpolation. \\ **Acceleration Kp, Ki**  — deceleration and acceleration regulator. 
-**Кp** — proportional coefficient. \\ + 
-**Kd** — differentiating coefficient. \\+~~CL~~
  
-**Square Ki, Kp** — phase current regulator for a square wave. \\ 
-**FOC Ki, Kp** — phase current regulator for FOC mode. \\ 
-**FW Ki, Kp** — field weakening coefficients. \\ 
-**DCv Ki, Kp** — voltage regulator on the DC bus. \\ 
-**DCi Ki, Kp** — current regulator on the DC bus. \\ 
-**DCw Ki, Kp** — power calculator. \\ 
-**Speed Ki, Kp, Kd** — speed regulator for throttle control modes **Speed** and **Speed+torque**. \\ 
-**PLL Ki, Kp** — speed regulator for motor angle interpolation. \\ 
-**Acceleration Kp, Ki** — deceleration and acceleration regulator. 
-~~CL~~ \\ 
 ===== Status flags ===== ===== Status flags =====
  
-The **Controller** > **Status Flags** menu section displays errors that may occur during the operation of the Controller. If an error occurs, the parameter value changes to **On**.\\+The **Controller**  > **Status Flags**  menu section displays errors that may occur during the operation of the Controller. If an error occurs, the parameter value changes to **On**.
  
-{{:en:controller:k29_en.png?nolink |}}+{{:en:controller:flags_0808.png?nolink|}}
  
-**Reset?** — reset all statuses. Values **On** and **Off**. \\ +**Reset?**  — reset all statuses. Values **On** and **Off**. \\  
-**Max acceleration** — maximum acceleration, in ERPM/s. \\ +**Max acceleration**  — maximum acceleration, in ERPM/s. \\  
-**Min deceleration** — maximum deceleration, in ERPM/s. \\ +**Min deceleration**  — maximum deceleration, in ERPM/s. \\  
-**Overload current** — the last recorded current on the phases, in Amperes. \\ +**Overload current**  — the last recorded current on the phases, in Amperes. \\  
-**Overload** — exceeding the permissible current values. Values **On** and **Off**. \\ +**Overload**  — exceeding the permissible current values. Values **On**  and **Off**. \\  
-**Over-Field weakening** — weakening error. Values **On** and **Off**. \\ +**Over-Field weakening**  — weakening error. Values **On**  and **Off**. \\  
-**Supply overvoltage** — too high supply voltage, the error will appear above 95V, but in general depends on the controller model. Values **On** and **Off**. \\ +**Supply overvoltage**  — too high supply voltage, the error will appear above 95V, but in general depends on the controller model. Values **On** and **Off**. \\  
-**Supply undervoltage** — too low supply voltage, less than the minimum battery supply threshold. Values **On** and **Off**. \\ +**Supply undervoltage**  — too low supply voltage, less than the minimum battery supply threshold. Values **On**  and **Off**. \\  
-**12V protection** — breaking down or error on the 12V power line. Values **On** and **Off**. \\ +**12V protection** — error on the 12V power line. Values **On** and **Off**. \\ 
-**Brake error** — brake lever connection error. Values **On** and **Off**. \\ +**Control fail** — the controller was not able to smoothly turn off the electric motor in time when the brake contacts were closed. Values **On** and **Off**. 
-**Throttle error** — throttle lever connection error. Values **On** and **Off**. \\ +**12V protection**  — breaking down or error on the 12V power line. Values **On**  and **Off**. \\  
-**Hall error** — Hall sensor connection error. Values **On** and **Off**. \\ +**Brake error**  — brake lever connection error. Values **On**  and **Off**. \\  
-**Code error** — error executing firmware code. Values **On** and **Off**. Let us know if this error occurs. \\ +**Throttle error**  — throttle lever connection error. Values **On**  and **Off**. \\  
-**PAS protection** — PAS error. Values **On** and **Off**. \\ +**Hall error**  — Hall sensor connection error. Values **On**  and **Off**. \\  
-**Controller overheat** — overheat protection of the controller. Values **On** and **Off**. \\ +**Code error**  — error executing firmware code. Values **On**  and **Off**. Let us know if this error occurs. \\  
-**Motor overheat** — overheating protection of the electric motor. Values **On** and **Off**. \\ +**Thread error** — processor overload. Values **On** and **Off**. The error is not critical, let us know if it occurs. \\ 
-**Protection fail** — hardware error, malfunction of all protection systems during controller self-test. If this error occurs, the operation of the Controller will be impossible. Values **On** and **Off**. \\ +**PAS protection**  — PAS error. Values **On**  and **Off**. \\  
-**Voltage on phases** — overvoltage on phases. Values **On** and **Off**. \\ +**Controller overheat**  — overheat protection of the controller. Values **On**  and **Off**. \\  
-**CAN: error** — CAN-bus errors. Values **On** and **Off**. Let us know if this error occurs. \\ +**Motor overheat**  — overheating protection of the electric motor. Values **On**  and **Off**. \\  
-**LEC** — types of errors on the CAN bus. If everything is alright you will see the value **Ok**. In case of errors, there will be values -  **Stuff**, **Form**, **Acknowledgment**, **Bit recessive**, **Bit dominant**, **CRC**, **SW**. Tell us the code if this error occurs. \\ +**Protection fail**  — hardware error, malfunction of all protection systems during controller self-test. If this error occurs, the operation of the Controller will be impossible. Values **On**  and **Off**. \\  
-**Receive w/error** — CAN-bus errors on receiving. \\ +**ADC sample error** — software error of the analog-to-digital converter (ADC). Values **On** and **Off**. \\ 
-**Sent w/error** — CAN-bus errors on transmitting. \\ +**VBUS sample error** — supply voltage measurement error. Values **On** and **Off**. \\ 
-**CAN state** — overloading buffers. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **OVR0**, **OVR1**, **OVR01**. Tell us the code if this error occurs. \\ +**Voltage on phases**  — overvoltage on phases. Values **On**  and **Off**. \\  
-**CPU Load** — current load of the central processor, in percentage (**%**).+**LEC**  — types of errors on the CAN bus. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **Stuff**, **Form**, **Acknowledgment**, **Bit recessive**, **Bit dominant**, **CRC**, **SW**. Tell us the code if this error occurs. \\  
 +**Receive w/error**  — CAN-bus errors on receiving. \\  
 +**Sent w/error**  — CAN-bus errors on transmitting. \\  
 +**CAN state**  — overloading buffers. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **OVR0**, **OVR1**, **OVR01**. Tell us the code if this error occurs. \\  
 +**CAN RX** — the number of messages in the CAN bus to receive. \\ 
 +**CAN TX** — the number of messages in the CAN bus to transmission. \\ 
 +**CPU Load**  — current load of the central processor, in percentage (**%**).
  
 ===== Debug information ===== ===== Debug information =====
  
-The menu section **Controller** > **Debug information** shows the main parameters of your Controller, electric motor, and the whole system - temperature, rpm, voltage, and current, as well as the values of the current regulators. \\+The menu section **Controller**  > **Debug information**  shows the main parameters of your Controller, electric motor, and the whole system - temperature, rpm, voltage, and current, as well as the values of the current regulators.
  
-{{:en:controller:k30_en.png?nolink |}} +{{:en:controller:debug_0808.png?nolink|}}
  
-**Temp FET** — temperature of the field-effect transistors (MOSFETs) of the Controller, in degrees Celsius (**°C**). \\ +**Temp. controller**  — temperature of the Controller, in degrees Celsius (**°C**). \\  
-**Temp Motor** — temperature of the electric motor, in degrees Celsius (**°C**). \\ +**Temp. motor**  — temperature of the electric motor, in degrees Celsius (**°C**). \\  
-**DC current** — DC current, in amperes (**А**). \\ +**DC current**  — DC current, in amperes (**А**). \\  
-**DC voltage** — DC voltage, in volts (**V**). \\ +**DC voltage**  — DC voltage, in volts (**V**). \\  
-**AC current** — AC current, in amperes (**А**). \\ +**AC current**  — AC current, in amperes (**А**). \\  
-**AC voltage** — AC voltage, in volts (**V**). \\ +**AC voltage**  — AC voltage, in volts (**V**). \\  
-**Motor U0** — DC voltage on phases, in volts (**V**). \\ +**Motor U0**  — DC voltage on phases, in volts (**V**). \\  
-**System 12V** — voltage on the CAN bus 12V, in volts (**V**). \\ +**System 12V**  — voltage on the CAN bus 12V, in volts (**V**). \\  
-**System 5V** — voltage on the CAN bus 5V, in volts (**V**). \\ +**System 5V**  — voltage on the CAN bus 5V, in volts (**V**). \\  
-**RPM** — motor speed, in RPM (**RPM**). \\ +**RPM**  — motor speed, in RPM (**RPM**). \\ **ERPM**  — electric revolutions of the motor per minute (**ERPM**). \\  
-**ERPM** — electric revolutions of the motor per minute (**ERPM**). \\ +**Hall input**  — this parameter allows you to check the functionality of the Hall sensors. There are three digits in this item, each shows the signal level, if you rotate the motor slowly by hand, all three digits should change. If none of the digits change, check if the Hall connector is connected or the ground may be broken. If one of the digits does not change - there is no contact or the sensor wire is broken. To check the contacts in the controller, disconnect the Hall connector and measure the voltages on the controller connector. There should be about 4V on the signal lines of the Halls, 5V on the power supply, and about 3V on the temperature sensor line. \\  
-**Hall input** — this parameter allows you to check the functionality of the Hall sensors. There are three digits in this item, each shows the signal level, if you rotate the motor slowly by hand, all three digits should change. If none of the digits change, check if the Hall connector is connected or the ground may be broken. If one of the digits does not change - there is no contact or the sensor wire is broken. To check the contacts in the controller, disconnect the Hall connector and measure the voltages on the controller connector. There should be about 4V on the signal lines of the Halls, 5V on the power supply, and about 3V on the temperature sensor line. \\ +**Hall index**  — virtual position of the motor, digits from 1 to 6 (normal operation). \\  
-**Hall index** — virtual position of the motor, digits from 1 to 6 (normal operation). \\ +**Throttle %**  — the percentage of how much the throttle is pressed. \\  
-**Throttle %** — the percentage of how much the throttle is pressed. \\ +**Brake %**  — the percentage of how much the brake is pressed. \\  
-**Brake %** — the percentage of how much the brake is pressed. \\ +**Speed request**  — set point for the speed regulator, in eRPM. \\  
-**Speed request** — set point for the speed regulator, in eRPM. \\ +**Torque request**  — phase current request, either positive throttle or a negative brake. \\  
-**Torque request** — phase current request, either positive throttle or a negative brake. \\ +**Torque limit**  — current limit for this type of controller, taking into account overheating. \\  
-**Torque limit** — current limit for this type of controller, taking into account overheating. \\ +**Temp CPU**  — CPU temperature, in degrees Celsius (**°C**). \\ 
-**Temp CPU** — CPU temperature, in degrees Celsius (**°C**).+ 
 +Next in the menu are the sections **Debug FOC**  and **Remote inputs**, which are described below.
  
-Next in the menu are the sections **Debug FOC** and **Remote inputs**, which are described below. 
-  
 ==== Debug FOC ==== ==== Debug FOC ====
  
-In the menu section **Controller** > **Debug information** > **Debug FOC** \\+In the menu section **Controller**  > **Debug information**  > **Debug FOC**
  
-{{:en:controller:k31_en.png?nolink |}}+{{:en:controller:k31_en.png?nolink&  }} 
 + 
 +**U Q**  — Q-axis voltage, in volts (**V**). \\ **U D**  — D-axis voltage, in volts (**V**). \\ **I Q**  — Q-axis current, in amperes (**А**). \\ **I D**  — D-axis current, in amperes (**А**). \\ **Ireqest Q**  — Q-axis current request, in amperes (**А**). \\ **Ireqest D**  — D-axis current request, in amperes (**А**). 
 + 
 +~~CL~~
  
-**U Q** — Q-axis voltage, in volts (**V**). \\ 
-**U D** — D-axis voltage, in volts (**V**). \\ 
-**I Q** — Q-axis current, in amperes (**А**). \\ 
-**I D** — D-axis current, in amperes (**А**). \\ 
-**Ireqest Q** — Q-axis current request, in amperes (**А**). \\ 
-**Ireqest D** — D-axis current request, in amperes (**А**).  
-~~CL~~ \\ 
 ==== Remote inputs ==== ==== Remote inputs ====
  
-In the menu section **Controller** > **Debug information** > **Remote inputs** you can view the parameters of the throttle and brake levers connected to other devices connected to the CAN-bus (On-board computer or uLight). \\+In the menu section **Controller**  > **Debug information**  > **Remote inputs**  you can view the parameters of the throttle and brake levers connected to other devices connected to the CAN-bus (On-board computer or uLight). 
 + 
 +{{:en:controller:k32_en.png?nolink&  }}**Throttle**  — voltage on the throttle lever at a remote source (On-board computer or uLight), in volts (**V**). \\ **Brake**  — voltage at the brake lever at a remote source (On-board computer or uLight), in volts (**V**). \\ **Throttle % **— the percentage of how much the throttle pressed at a remote source. \\ **Brake %**  — the percentage of how much the brake pressed at a remote source. 
 + 
 +~~CL~~
  
-{{:en:controller:k32_en.png?nolink |}} 
-**Throttle** — voltage on the throttle lever at a remote source (On-board computer or uLight), in volts (**V**). \\ 
-**Brake** — voltage at the brake lever at a remote source (On-board computer or uLight), in volts (**V**). \\ 
-**Throttle % **— the percentage of how much the throttle pressed at a remote source. \\ 
-**Brake %** — the percentage of how much the brake pressed at a remote source. 
-~~CL~~ \\ 
 ===== Logger ===== ===== Logger =====
  
-In the **Controller ** > **Logger** menu section, you can enable and configure the data logging during the operation of the Controller. This functionality is experimental, errors may occur. The file is saved in ** CSV ** format to an SD card inserted into the On-board computer. To view the file, you can use the service [[https://datazap.me/|Datazap]]. The SD card must have a FAT32 file system.+In the **Controller **  > **Logger**  menu section, you can enable and configure the data logging during the operation of the Controller. This functionality is experimental, errors may occur. The file is saved in ** CSV **  format to an SD card inserted into the On-board computer. To view the file, you can use the service [[https://datazap.me/|Datazap]]. The SD card must have a FAT32 file system.
  
-{{:en:controller:11_0.8.png?nolink |}}+{{:en:controller:11_0.8.png?nolink&  }}
  
-**Start logging** — to start recording, select **On** and press the right button of the On-board computer. After that, the **#State** menu item will change to **Waiting** status. The recording will start automatically after pressing the throttle grip. If an error occurs during the recording process, you will see its code in the ** # Error code ** menu item. In case of an error, firstly, check that the SD card has the FAT32 file system, and secondly, that there is free space on the SD card for recording. Additionally, you can delete unnecessary files from the card. After that, restart the Controller and start recording again. If the error repeats, contact us through the website or chat technical support and report the error code.+**Start logging**  — to start recording, select **On**  and press the right button of the On-board computer. After that, the **#State**  menu item will change to **Waiting**  status. The recording will start automatically after pressing the throttle grip. If an error occurs during the recording process, you will see its code in the ** # Error code **  menu item. In case of an error, firstly, check that the SD card has the FAT32 file system, and secondly, that there is free space on the SD card for recording. Additionally, you can delete unnecessary files from the card. After that, restart the Controller and start recording again. If the error repeats, contact us through the website or chat technical support and report the error code.
  
-**Stop logging** — stop recording, select **On** to end recording+**Stop logging**  — stop recording, select **On**  to end recording.
-~~CL~~ \\ +
-**Start mode** — selection of recording start mode:  +
-  * **Manual** — enable manual recording. +
-  * **At start** — recording starts automatically when the Controller is turned on.+
  
-**Log time** — two parameters of time for recording to choose from: +~~CL~~
-  * **Time step** — delta of time since the previous record. +
-  * **Sys time** — global time, which is incremented after the start of the controller.+
  
-**Log rate** — delay between records of values. You can choose either the number of PWM cycles (**PWM1**, **PWM2**, **PWM5**, **PWM10**), either time (**1ms**, **10ms**, **20ms**, **100ms**, **1s**, **5s**, **10s**, **30s**).+ \\ **Start mode**  — selection of recording start mode:
  
-**Mode** — recording mode selection: +  * **Manual**  — enable manual recording. 
-  * **Buffered** — buffering and recording in segments.  +  * **At start**  — recording starts automatically when the Controller is turned on
-  * **Max rate** — continuous recording mode.+**Log time**  — two parameters of time for recording to choose from:
  
-**Data averaging** — using filters while recording:  +  * **Time step**  — delta of time since the previous record. 
-  * **None**  — filter disabled (records real values)+  * **Sys time**  — global time, which is incremented after the start of the controller
-  * **Fast** — slight averaging (smoothes values). +**Log rate**  — delay between records of values. You can choose either the number of PWM cycles (**PWM1****PWM2**, **PWM5**, **PWM10**), either time (**1ms**, **10ms**, **20ms**, **100ms**, **1s**, **5s**, **10s**, **30s**).
-  * **Slow** — large averaging.+
  
-**Add header to log** — adding the name of the controller when writing the log, so that you can understand which controller the log belongs to in multi-motors configurations. You can set the name of the controller in the menu **Controller** > **Extra parameters**, items **Prefix 1** and **Prefix 2**.+**Mode**  — recording mode selection:
  
-Next, in the **# Data to log** menu sections, you can select the set of parameters you want to recordSelect **On** to enable parameter recording.+  * **Buffered**  — buffering and recording in segments. 
 +  * **Max rate**  — continuous recording mode. 
 +**Data averaging**  — using filters while recording:
  
-{{:en:controller:k_55_en.png?nolink |}} +  * **None**  — filter disabled (records real values). 
-**# Data to log**: \\  +  * **Fast**  — slight averaging (smoothes values). 
-**Battery Voltage** — battery voltage data logging. \\  +  * **Slow**  — large averaging. 
-**Battery Current** — battery current data logging. \\  +**Add header to log**  — adding the name of the controller when writing the log, so that you can understand which controller the log belongs to in multi-motors configurations. You can set the name of the controller in the menu **Controller**  > **Extra parameters**, items **Prefix 1**  and **Prefix 2**. 
-**Motor Voltage** — motor voltage data logging. \\  + 
-**Motor Current** — motor current data logging. \\  +Next, in the **# Data to log**  menu sections, you can select the set of parameters you want to record. Select **On**  to enable parameter recording. 
-**Wheel speed** — wheel speed data logging. \\  + 
-**Motor rad/s** — data logging of the angular speed of the electric motor. \\  +{{:en:controller:k_55_en.png?nolink&  }}**# Data to log**: \\ **Battery Voltage**  — battery voltage data logging. \\ **Battery Current**  — battery current data logging. \\ **Motor Voltage**  — motor voltage data logging. \\ **Motor Current**  — motor current data logging. \\ **Wheel speed**  — wheel speed data logging. \\ **Motor rad/s**  — data logging of the angular speed of the electric motor. \\ **Motor RPM**  — data logging of revolutions of an electric motor per minute. \\ **Tmotor °C**  — data logging of the electric motor temperature. \\ **Tfet °C**  — data logging the temperature of field-effect transistors. \\ **Raw hall input**  — data logging the input status from Hall sensors without filter. \\ **Hall index**  — virtual position of motor. \\ **Throttle %**  — throttle grip data logging. \\ **Brake %**  — brake lever data logging. \\ **FOC Vq**  — Q-axis voltage data logging. \\ **FOC Vd**  — D-axis voltage data logging. \\ **FOC Iq**  — Q-axis current data logging. \\ **FOC Id**  — D-axis current data logging. \\ **FOC Iq request**  — Q-axis current request data logging. \\ **FOC Id request**  — D-axis current request data logging. \\ **Current phA**  — data logging the current on the A phase of the electric motor. \\ **Current phB**  — data logging the current on the B phase of the electric motor. \\ **Current phC**  — data logging the current on the С phase of the electric motor. \\ **PAS frequency RPM**  — PAS frequency data logging. \\ **PAS torque Nm**  — PAS torque data logging. \\ **PAS power W**  — PAS power data logging. \\ **Speed request**  — speed request data logging. \\ **Torque request**  — torque request data logging.
-**Motor RPM** — data logging of revolutions of an electric motor per minute. \\  +
-**Tmotor °C** — data logging of the electric motor temperature. \\  +
-**Tfet °C** — data logging the temperature of field-effect transistors. \\  +
-**Raw hall input** — data logging the input status from Hall sensors without filter. \\  +
-**Hall index** — virtual position of motor. \\  +
-**Throttle %** — throttle grip data logging. \\  +
-**Brake %** — brake lever data logging. \\  +
-**FOC Vq** — Q-axis voltage data logging. \\  +
-**FOC Vd** — D-axis voltage data logging. \\  +
-**FOC Iq** — Q-axis current data logging. \\  +
-**FOC Id** — D-axis current data logging. \\  +
-**FOC Iq request** — Q-axis current request data logging. \\  +
-**FOC Id request** — D-axis current request data logging. \\  +
-**Current phA** — data logging the current on the A phase of the electric motor. \\  +
-**Current phB** — data logging the current on the B phase of the electric motor. \\  +
-**Current phC** — data logging the current on the С phase of the electric motor. \\ +
-**PAS frequency RPM** — PAS frequency data logging. \\ +
-**PAS torque Nm** — PAS torque data logging. \\ +
-**PAS power W** — PAS power data logging. \\ +
-**Speed request** — speed request data logging. \\ +
-**Torque request** — torque request data logging.\\+
  
 ===== Statistics ===== ===== Statistics =====
  
-In the menu section **Controller** > **Statistics** you can view the data on the Controller. These are trip statistics that will be automatically reset when the controller is powered off. If you have several Controllers in the system, then you can see the summary data for all controllers in the general statistics in the On-board computer. \\+In the menu section **Controller**  > **Statistics**  you can view the data on the Controller. These are trip statistics that will be automatically reset when the controller is powered off. If you have several Controllers in the system, then you can see the summary data for all controllers in the general statistics in the On-board computer. 
 + 
 +{{:en:controller:statistics_0808.png?nolink |}}
  
-{{:en:controller:13_0.8.png?nolink |}}+**Wh used total**  — total energy consumption (used plus regen), in Watt-hours (**Wh**). \\  
 +**Wh used**  — energy consumption, in Watt-hours (**Wh**). \\  
 +**Wh regen.**  — energy gained during the recuperation process, in Watt-hours (**Wh**). \\  
 +**Regen. %**  — the percentage of energy recovered during recuperation (**%**). \\  
 +**Ah used total**  — total energy consumption (used plus regen), in Ampere hours (**Ah**). \\  
 +**Ah used**  — energy consumption, in Ampere hours (**Ah**). \\  
 +**Ah regen.**  — energy gained during the recuperation process, in Ampere hours (**Ah**). \\ 
 +**Min bat. voltage** — minimum battery voltage, in Volts (**V**). \\ 
 +**Max phase curr.** — maximum phase current, in Amps (**A**). \\ 
 +**Peak power** — maximum motor power, in Watts (**W**). \\ 
 +**Max motor temp.** — maximum motor temperature, in degrees Celsius (**°C**). \\ 
 +**Max controller temp.** — the maximum temperature of the Controller, in degrees Celsius (**°C**)\\
  
-**Wh used total** — total energy consumption (used plus regen), in Watt-hours (**Wh**). \\ +The values below are approximate! \\  
-**Wh used** — energy consumption, in Watt-hours (**Wh**). \\ +**Motor efficiency**  — efficiency of the electric motor, in percent (**%**). \\  
-**Wh regen.** — energy gained during the recuperation process, in Watt-hours (**Wh**). \\ +**Effaverage**  — average efficiency of the electric motor, in percent (**%**). \\  
-**Regen. %** — the percentage of energy recovered during recuperation (**%**). \\  +**Torque**  — current torque of the electric motor, in Newton-meters (**Nm**). \\  
-**Ah used total** — total energy consumption (used plus regen), in Ampere hours (**Ah**).  \\ +**Power out**  — the power that the electric motor delivers, in Watts (**W**). \\  
-**Ah used**  — energy consumption, in Ampere hours (**Ah**). \\ +**Power in**  — power supplied to the electric motor, in Watts (**W**).
-**Ah regen.** — energy gained during the recuperation process, in Ampere hours (**Ah**). \\+
  
-The values below are approximate! \\ 
-**Motor efficiency** — efficiency of the electric motor, in percent (**%**). \\ 
-**Eff. average** — average efficiency of the electric motor, in percent (**%**). \\ 
-**Torque** — current torque of the electric motor, in Newton-meters (**Nm**). \\  
-**Power out** — the power that the electric motor delivers, in Watts (**W**). \\  
-**Power in** — power supplied to the electric motor, in Watts (**W**). \\  
 ===== Device information ===== ===== Device information =====
  
-In the menu section **Controller** > **Device Information** you can view the basic information about the Controller. In this menu, you can check which firmware version is loaded into your Controller, as well as other parameters that differ depending on the Controller model. \\+In the menu section **Controller**  > **Device Information**  you can view the basic information about the Controller. In this menu, you can check which firmware version is loaded into your Controller, as well as other parameters that differ depending on the Controller model.
  
-{{:en:controller:k34_en.png?nolink |}}+{{:en:controller:device_info.png?nolink|}}
  
-**Micro Nucular Controller** — device name depending on the type of Controller. \\ +**Nucular Controller**  — device name depending on the type of Controller. \\  
-**Max supply** — 95V. The warranty covers supply voltages up to **90V** inclusive. \\ +**Max supply**  — 95V. The warranty covers supply voltages up to **90V**  inclusive. \\  
-**Max current** — the value of the maximum phase current, depending on the type of Controller, in amperes (A). \\ +**Max current**  — the value of the maximum phase current, depending on the type of Controller, in amperes (A). \\  
-**Firmware date** — firmware compilation date. \\ +**Encoder speed** — 26kHz or 580kHz (new Controller version with orange phase wires). \\ 
-**Firmware ver.** — version of the installed firmware, you can check for updates in the section **[[en:firmware|Firmware]]**. \\ +**Firmware date**  — firmware compilation date. \\  
-**Loader date** — the data loader compilation date. \\ +**Firmware ver.**  — version of the installed firmware, you can check for updates in the section **[[:en:firmware|Firmware]]**. \\  
-**Loader version** — data loader version. \\ +**Loader date**  — the data loader compilation date. \\  
-**Worked** — operating time of the Controller in kilowatt-hours (kW*h). \\ +**Loader version**  — data loader version. \\  
-**t° middle 100 h** — the average temperature of the Сontroller over the last 100 hours. \\ +**Production date** — date of manufacture of the controller. \\ 
-**t° middle** — the average temperature of the Сontroller over all time. \\ +**Worked**  — operating time of the Controller in kilowatt-hours (kW*h). \\  
-**Current protections** — the number of triggered overcurrent protections over all time of operation of the controller. \\ +**t° middle 100 h**  — the average temperature of the Сontroller over the last 100 hours. \\  
-**Temperature protections** — the number of triggered temperature protections over all time of operation of the controller. \\ +**t° middle**  — the average temperature of the Сontroller over all time. \\  
-**Voltage protections** — the number of triggered voltage protections over all time of operation of the controller. \\ +**Current protections**  — the number of triggered overcurrent protections over all time of operation of the controller. \\  
-**Power cycle** — number of controller switching on. \\ +**Temperature protections**  — the number of triggered temperature protections over all time of operation of the controller. \\  
-**Power-on time** — total operating time of the Controller, minutes, hours, days.+**Voltage protections**  — the number of triggered voltage protections over all time of operation of the controller. \\  
 +**Power cycle**  — number of controller switching on. \\  
 +**Power-on time**  — total operating time of the Controller, minutes, hours, days. \\ 
 +**Serial number** — serial number of the Controller (for devices manufactured from 01 Jul 2022). Take a photo or write down this number and keep it separate from the Controller. You may need it when requesting repairs or if the Controller is stolen. After updating the firmware to 0.8.7, in some versions of controllers manufactured before 01 Jul 2022, a serial number may also appear. Check after update.