meta data for this page
Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
en:controller:setup [2021/10/15 17:25] dmitry [Statistics] |
en:controller:setup [2023/04/05 15:24] (current) dmitry [Controller (v.0.8.7)] |
||
---|---|---|---|
Line 1: | Line 1: | ||
~~Title: Controller setup~~ | ~~Title: Controller setup~~ | ||
- | ====== Important! ====== | + | ====== Controller (v.0.8.9) ====== |
- | + | ||
- | Before reading the instructions, | + | |
- | * [[en: | + | |
- | * [[en: | + | |
- | + | ||
- | + | ||
- | ====== Controller (v.0.7) ====== | + | |
The controller allows you to control BLDC (Brushless Direct Current Motor) and PMSM (Permanent Magnet Synchronous Motor) electric motors. At the moment we are producing three types of controllers for different motors power. | The controller allows you to control BLDC (Brushless Direct Current Motor) and PMSM (Permanent Magnet Synchronous Motor) electric motors. At the moment we are producing three types of controllers for different motors power. | ||
Line 15: | Line 8: | ||
^ Parameters | ^ Parameters | ||
- | ^Maximum power| | + | ^Maximum power| |
^Nominal power| | ^Nominal power| | ||
- | ^Voltage range| | + | ^Voltage range| |
^Phase current, max| 120A | 250А | 500А | | ^Phase current, max| 120A | 250А | 500А | | ||
- | ^Battery current, max| | + | ^Battery current, max| 90A | 150A | |
^Supply out| 12В 3A ||| | ^Supply out| 12В 3A ||| | ||
^Operating temperature range| | ^Operating temperature range| | ||
Line 30: | Line 23: | ||
^Sleep current less| < | ^Sleep current less| < | ||
^Protection class| | ^Protection class| | ||
- | ^Size, without wires| | + | ^Size, without wires| |
^Weight| | ^Weight| | ||
^Warranty| | ^Warranty| | ||
Line 36: | Line 29: | ||
//In the kit: // | //In the kit: // | ||
- | | + | * CAN-cable 1,2-meters length for connection to the On-board Computer. |
- | * Phase wires.\\ | + | * Phase wires. |
- | * Battery wires\\ | + | * Battery wires |
* Hall sensors wire. | * Hall sensors wire. | ||
Line 45: | Line 38: | ||
// | // | ||
- | * САN-cables 0,3 and 2 meters length.\\ | + | * САN-cables 0,3 and 2 meters length. |
- | * Controller-side inputs for connection throttle, brakes levers directly to the Controller.\\ | + | * Controller-side inputs for connection throttle, brakes levers directly to the Controller. |
- | * PWM/PAS wire for connection PAS, fans for cooling or brake lights.\\ | + | * PWM/PAS wire for connection PAS, fans for cooling or brake lights. |
===== Connection diagram ===== | ===== Connection diagram ===== | ||
Line 55: | Line 49: | ||
When the power is turned on for the first time, the controller will start automatically. To enable/ | When the power is turned on for the first time, the controller will start automatically. To enable/ | ||
- | You can find the wiring diagrams of the other devices on this [[https://drive.google.com/ | + | You can find the wiring diagrams of the other devices on this [[https://bit.ly/3zPIYvn|link]]. By default, all peripherals (throttle, brake, switches, etc.) are connected into ports located on the backside of **[[en: |
If you want to connect peripherals directly to the Controller, you need to order " | If you want to connect peripherals directly to the Controller, you need to order " | ||
Line 95: | Line 89: | ||
===== Auto-setup ===== | ===== Auto-setup ===== | ||
- | The auto-setup function in the **Controller** > **Auto-setup** menu section allows you to automatically set up the electric motor, throttle, and brake levers. | + | The auto-setup function in the **Controller** > **Auto-setup** menu section allows you to automatically set up the electric motor, throttle, and brake levers. If the throttle and brake levers are connected to the On-board computer, then they must be configured in [[en: |
- | {{: | + | {{: |
The auto-setup menu starts the subprogram and shows only the process. All settings are saved under **Controller** > **Motor setup**. After restarting the Controller, all switches will be in the **Off** position. | The auto-setup menu starts the subprogram and shows only the process. All settings are saved under **Controller** > **Motor setup**. After restarting the Controller, all switches will be in the **Off** position. | ||
Line 111: | Line 105: | ||
If you have a throttle lever and an analog brake connected, then you need to enable Full Setup, and follow the instructions on the On-Board computer screen. The corresponding menu items will indicate when to press and release the throttle or brake lever. | If you have a throttle lever and an analog brake connected, then you need to enable Full Setup, and follow the instructions on the On-Board computer screen. The corresponding menu items will indicate when to press and release the throttle or brake lever. | ||
- | If only one throttle lever is connected, you must independently turn on the items step-by-step: | + | If only one throttle lever is connected, you must independently turn on the items step-by-step: |
If the motor is heavy and autodetect does not happen, you can gently push it with your hand or increase the tuning current in the **Controller** > **Auto-setup** > **Setup current** section, for example, twice. The setup current can be selected in the range from **2A** to **50A**, in increments of **1A**. | If the motor is heavy and autodetect does not happen, you can gently push it with your hand or increase the tuning current in the **Controller** > **Auto-setup** > **Setup current** section, for example, twice. The setup current can be selected in the range from **2A** to **50A**, in increments of **1A**. | ||
Line 121: | Line 115: | ||
===== Firmware update ===== | ===== Firmware update ===== | ||
- | In the menu section **Controller** > **Settings and Update**, you can update the Controller' | + | In the menu section **Controller** > **Update |
{{: | {{: | ||
Line 142: | Line 136: | ||
==== Modes setup ==== | ==== Modes setup ==== | ||
- | {{: | + | {{: |
The ** # Current mode ** line displays the currently selected control mode. List of possible options: \\ | The ** # Current mode ** line displays the currently selected control mode. List of possible options: \\ | ||
Line 158: | Line 152: | ||
**Power** — maximum power (discharge) of the battery, in kilowatts (**kW**). Select of values from **0.00kW** to **30.0kW**, in increments of **0.1kW**. Set to 0.0kW to disable the power limiting limit.\\ | **Power** — maximum power (discharge) of the battery, in kilowatts (**kW**). Select of values from **0.00kW** to **30.0kW**, in increments of **0.1kW**. Set to 0.0kW to disable the power limiting limit.\\ | ||
- | **Speed** — maximum speed in percentage (%). Select of values from **4%** to **150%**, in increments of **2%**. The value of this parameter determines the percentage of speed depending on the reference speed (see section **[[en: | + | **Speed** — maximum speed in percentage (%). Select of values from **4%** to **150%**, in increments of **2%**. The value of this parameter determines the percentage of speed depending on the reference speed (see section **[[en: |
==== Electric brake setup ==== | ==== Electric brake setup ==== | ||
- | **Braking phase** — the value of the phase current of braking by the motor, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable **Active braking** in the section **Controller** > **Control**. When using the switch brake, lower brake current change speed makes recuperation more smooth. \\ | + | **Braking phase** — the value of the phase current of braking by the motor, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable **Active braking** in the section **Controller** > **Control**. When using limit switches on mechanical brakes, lower brake current change speed makes recuperation more smooth. \\ |
==== Braking phase at speed control ==== | ==== Braking phase at speed control ==== | ||
Line 172: | Line 166: | ||
In the menu item **Controller** > **Control** > **Speed lim. at 0% throttle** enable the speed limit at 0% throttle (optional), enable if you need braking with completely released throttle. \\ | In the menu item **Controller** > **Control** > **Speed lim. at 0% throttle** enable the speed limit at 0% throttle (optional), enable if you need braking with completely released throttle. \\ | ||
+ | ==== Regenerative braking setting ==== | ||
+ | |||
+ | **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. This function allows regenerative braking to be initiated when the throttle is released. \\ | ||
+ | |||
+ | This function will be active if additional modes are disabled in the **Controller** > **Advanced modes** menu section or if, with activated additional modes, in one of the menu sections **Mode S1**, **Mode S2** or **Mode S3** in menu item **Braking ph. at 0% throttle** was setup is **0A**. | ||
==== Reverse setup ==== | ==== Reverse setup ==== | ||
Line 181: | Line 180: | ||
==== Field weakening setup ==== | ==== Field weakening setup ==== | ||
- | **Field weakening** — the magnitude of the field weakening current, in Amperes (**A**). Select of values from **0A** to **500A**, | + | **Field weakening** — the magnitude of the field weakening current, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. This setting allows you to increase the maximum motor speed and depends on the supply voltage, in any case, the speed will be no more than the maximum supply voltage (**Vmax**) of the controller (**95V limit**).< |
- | + | The current of weakening creates a field that acts against the field of the permanent magnets. The superposition of these fields creates an equivalent field that is below nominal. The attenuation efficiency depends on the parameters of the motor. The best results can be obtained with IPM motors. </ | |
- | <WRAP center round info 60%>\\ | + | \\ |
- | The current of weakening creates a field that acts against the field of the permanent magnets. The superposition of these fields creates an equivalent field that is below nominal. The attenuation efficiency depends on the parameters of the motor. The best results can be obtained with IPM motors. | + | <WRAP center round warning 60%> |
- | </ | + | |
To set up the weakening, you need: | To set up the weakening, you need: | ||
- | * for one of the control modes in the section **Controller** > **Control modes** specify a speed value greater than 100%, for example, Speed 3 is 120%. | ||
- | * set the weakening current value in the section **Controller** > **Control modes**, you can start from 30A.\\ | ||
- | Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified in the control mode. That is if the effective phase current is 70A, and the weakening current is set to 30A, then a minimum of 100A must be specified in the phase current settings. If the phase current increases to 80A, then only 20A will remain for weakening because 80A + 20A = 100A.\\ | + | * for one of the control modes in the section **Controller** |
+ | * set the weakening current value in the section **Controller** | ||
+ | |||
+ | Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified in the control mode. That is if the effective phase current is 70A, and the weakening current is set to 30A, then a minimum of 100A must be specified in the phase current settings. If the phase current increases to 80A, then only 20A will remain for weakening because 80A + 20A = 100A. | ||
+ | |||
+ | Also, the Controller will limit the speed of rotation of the motor so that its effective EMF does not exceed the maximum supply voltage of the controller (not the battery). If the motor starts twitching on the suspended wheel, then it is necessary to reduce the weakening current. | ||
- | Also, the Controller will limit the speed of rotation of the motor so that its effective EMF does not exceed the maximum supply voltage of the controller (not the battery). If the motor starts twitching on the suspended wheel, then it is necessary to reduce the weakening current.\\ | ||
==== Current change speed ==== | ==== Current change speed ==== | ||
Line 213: | Line 213: | ||
In the menu **Controller** > **Advanced modes** > **Neutral by default** you can activate the neutral mode (N) when the controller starts up, which will be active until one of the speed modes is activated. In a neutral mode, only the electric brake operates, throttle and PAS are disabled. This mode is recommended for use with speed buttons (not a switch). The function does not work with a 3-position switch (functions of the S1of3 and S3of3 ports in the **Controller** > **I/O configuration** menu). \\ | In the menu **Controller** > **Advanced modes** > **Neutral by default** you can activate the neutral mode (N) when the controller starts up, which will be active until one of the speed modes is activated. In a neutral mode, only the electric brake operates, throttle and PAS are disabled. This mode is recommended for use with speed buttons (not a switch). The function does not work with a 3-position switch (functions of the S1of3 and S3of3 ports in the **Controller** > **I/O configuration** menu). \\ | ||
+ | ~~CL~~ \\ | ||
Each mode has its own section in the **Controller** > **Advanced modes** > **Mode S1, Mode S2, Mode S3 ** with the following settings: \\ | Each mode has its own section in the **Controller** > **Advanced modes** > **Mode S1, Mode S2, Mode S3 ** with the following settings: \\ | ||
- | {{: | + | {{: |
**Throttle mode** — selection of the operating mode of the throttle lever, read more in the section **[[en: | **Throttle mode** — selection of the operating mode of the throttle lever, read more in the section **[[en: | ||
**Acceleration lim.** and **Deceleration lim.** — are specified in ERPM/s, select of values from **0 ERPM/s** to **500000 ERPM/s**, in increments of **200 ERPM/s **. These settings allow you to limit the speed of acceleration or deceleration of the motor, it is convenient to use on slippery surfaces. For setting go to the **Controller** > **Status flags** section, in this menu there are two parameters that register the maximum acceleration and deceleration — **Max acceleration** and **Max deceleration**. **Reset** the values of these parameters in the same section of the menu, then you need to ride your e-bike in order to register the current dynamics of acceleration and deceleration. You can use these values as a reference and decrease them if you need to limit change speed. If the type of surface changes, for example, it becomes too slippery, then these values can be reduced until it becomes comfortable to catch the moment when the wheel loses traction. \\ | **Acceleration lim.** and **Deceleration lim.** — are specified in ERPM/s, select of values from **0 ERPM/s** to **500000 ERPM/s**, in increments of **200 ERPM/s **. These settings allow you to limit the speed of acceleration or deceleration of the motor, it is convenient to use on slippery surfaces. For setting go to the **Controller** > **Status flags** section, in this menu there are two parameters that register the maximum acceleration and deceleration — **Max acceleration** and **Max deceleration**. **Reset** the values of these parameters in the same section of the menu, then you need to ride your e-bike in order to register the current dynamics of acceleration and deceleration. You can use these values as a reference and decrease them if you need to limit change speed. If the type of surface changes, for example, it becomes too slippery, then these values can be reduced until it becomes comfortable to catch the moment when the wheel loses traction. \\ | ||
+ | |||
+ | **Braking phase** — the value of the phase current of braking by the motor, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. For braking to zero, it is recommended to enable Active braking in the section **Controller** > **Control**. When using limit switches on mechanical brakes, lower brake current change speed makes recuperation more smooth. | ||
+ | |||
+ | **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. This function allows regenerative braking to be initiated when the throttle is released. If **0A** is specified or additional modes are disabled in the **Controller** > **Advanced modes** section of the menu, then for the recuperation level will be used value from menu item in the **Controller** > **Control modes** > **Braking ph. at 0% throttle** menu item. | ||
**Revers** — reverse gear activation when the control mode is selected. Select of values **On** or **Off**. \\ | **Revers** — reverse gear activation when the control mode is selected. Select of values **On** or **Off**. \\ | ||
Line 385: | Line 390: | ||
==== Throttle control mode setup ==== | ==== Throttle control mode setup ==== | ||
- | The menu item **Controller** > **Control** > **Throttle | + | The menu item **Controller** > **Control** > **Throttle |
- | {{: | + | {{: |
Three throttle modes options are available: | Three throttle modes options are available: | ||
Line 399: | Line 404: | ||
The menu items in the **Controller** > **Control** section allow you to set the voltage ranges of the throttle and brake grips. \\ | The menu items in the **Controller** > **Control** section allow you to set the voltage ranges of the throttle and brake grips. \\ | ||
- | {{: | + | {{: |
Currently, voltage settings for all throttles and brakes are common. \\ | Currently, voltage settings for all throttles and brakes are common. \\ | ||
Line 408: | Line 413: | ||
**Brake min** and **Brake max** — range of the analog brake lever, in millivolts (mV). Select of values from **0 mV** to **15 000 mV**, in increments of **10 mV**. \\ | **Brake min** and **Brake max** — range of the analog brake lever, in millivolts (mV). Select of values from **0 mV** to **15 000 mV**, in increments of **10 mV**. \\ | ||
+ | **Brake button power** — braking force when pressing the brake button relative to the phase braking level, in percent (%). This setting allows you to adjust the level of braking force with the brake levers with integrated brake buttons. \\ | ||
**Invert brake** — inverts the voltage value from the built-in brake lever. Select **On** to enable. It is useful to enable when the voltage brake lever with reverse voltage is connected to the On-board computer and you want to use the value **Auto** in the menu item **Controller** > **Control** > **Control source**. The digital brake grip (i.e. button) connects to the On-board computer, see section **[[en: | **Invert brake** — inverts the voltage value from the built-in brake lever. Select **On** to enable. It is useful to enable when the voltage brake lever with reverse voltage is connected to the On-board computer and you want to use the value **Auto** in the menu item **Controller** > **Control** > **Control source**. The digital brake grip (i.e. button) connects to the On-board computer, see section **[[en: | ||
**Active braking** — enables brake to use the battery for stopping. Select of values **On** and **Off**. \\ | **Active braking** — enables brake to use the battery for stopping. Select of values **On** and **Off**. \\ | ||
Line 435: | Line 441: | ||
===== Motor setup ===== | ===== Motor setup ===== | ||
- | The **Controller** > **Motor Setup** menu contains all settings related to electric motor operation parameters. | + | The **Controller** |
==== Motor temperature sensor ==== | ==== Motor temperature sensor ==== | ||
- | In the menu section **Controller** > **Motor setup** > **Motor t°-sensor** you can select a temperature range in which a smooth power limit will occur (**Delta °t** parameter) and specify the maximum temperature (**°t max**). | + | In the menu section **Controller** |
- | {{: | + | {{: |
- | **°t max** — maximum electric motor temperature, | + | **°t max** — maximum electric motor temperature, |
- | **Delta °t** — the temperature value that is deducted from the maximum temperature (**°t max**), the resulting temperature value will be the beginning of the power limit, in degrees Celsius (°C). Select of values from **1°C** to **100°C**, in increments of **1 °C**. | + | |
- | It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, | + | In the menu item **Sensor type** |
- | In the menu item **Sensor type** | + | It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, |
+ | |||
+ | The **# °t resistance** menu item displays | ||
==== Clutch ==== | ==== Clutch ==== | ||
- | In the menu section **Controller** > **Motor Setup** > **Clutch** you can configure a smooth engine launch for soft engagement clutch or freewheel. Useful for gear motors or mid-drives. At the moment, the setting works well only in the control mode **Torque**, because the clutch there is always engaged. An alternative option is to configure the acceleration limit in the modes **S1**, **S2**, **S3** in the menu section **Controller** > **Advanced modes**. | + | In the menu section **Controller** |
- | {{: | + | {{: |
- | The parameter **Mode** determines the way of operation:: \\ | + | The parameter **Mode** |
- | **Accelerate** — smoothly accelerates the motor until the load appears. \\ | + | |
- | **Accelerate and hold** — in addition to the previous one, it applies weak torque to the motor after the throttle is released, this mode allows you to switch speeds at mid-drive systems without using the pedals. | + | |
- | **# Phase amps** \\ | + | **# Phase amps** \\ **Start time** |
- | **Start time** — maximum time for soft start, in seconds (s). Select values from **1s** to **20s**, in increments of **1s**. \\ | + | |
- | **Start current** — phase motor current at which the load will be detected and the soft start is disabled, in amperes (А). Select values from **0.2А** to **50.0А**, in increments of **0.2А**. This value must be higher than the phase current for specified acceleration of the motor without load. \\ | + | |
- | **Detection time** — the time during which the load must be present, after which the soft start will be switched off, in milliseconds (ms). Select values from **10 ms** to **1000 ms**, in increments of **10 ms**. \\ | + | |
- | **Acceleration** | + | |
- | **Hold (20%)** and **Hold (80%)** — two parameters regulating the phase current supplied to the motor in the mode **Accelerate and hold**, in amperes (А). **20%** — current at low speeds, **80%** — current at about maximum speed. It is possible to determine the approximate values by the no-load current of the motor. Select values from **0.2А** to **50.0А**, in increments of **0.2А**. \\ | + | |
- | **Hold enable time** — time through which after the throttle has been pressed, torque hold will become available, in seconds (s). Select values from **1s** to **120s**, in increments of **4s**. | + | |
- | **Hold time** — the time during which torque will be applied after releasing the throttle, in seconds (s). Select values from **1s** to **120 s**, in increments of **1s**. | + | **Hold time** |
- | <WRAP center round tip 60%>\\ Optimal settings for MAC motor: **Accelerate**, | + | <WRAP center round tip 60%> \\ Optimal settings for MAC motor: **Accelerate**, |
- | ==== Manual setup the Hall sensors angles | + | ===== Firmware update ===== |
- | In general, it is not recommended to change these settings manually!\\ | + | In the menu section **Controller** > **Update and Settings**, you can update the Controller' |
- | In the menu section **Controller** > **Motor settings** | + | |
- | {{: | + | {{: |
- | **Offset for square** — additional shift for square wave mode, in degrees (**°**). Select | + | **Import config.** — loads the settings from the file ** NCconf.cfg |
- | **Offset total fwd** — shift all Halls sensors by the specified value for the direct rotation of the motor, in degrees (**°**). Select | + | \\ |
- | **Offset total bkwd** — shift all Halls sensors by the specified value for the reverse rotation | + | **Export config.** - saves the settings |
+ | \\ | ||
+ | **Reboot** — restarts | ||
+ | \\ | ||
+ | **Reset Wh usage** — resets the accumulated number of Watt-Hours in the controller. This indicator is displayed in the statistics | ||
+ | \\ | ||
+ | **Reset stats** — resets mileage | ||
+ | \\ | ||
+ | **Load defaults** — after a reset, the default settings are loaded but not saved. If you restart the Controller without saving after a reset, the previous settings will be loaded.\\ | ||
+ | \\ | ||
+ | **Erase data storage** — This function may be needed | ||
+ | \\ | ||
+ | **Update firmware** — starting the firmware update process. You can download the current firmware version and read the rules of update in the **[[: | ||
+ | ===== Control modes ===== | ||
- | To shift all the halls, | + | In the menu section **Controller** > **Control modes** |
- | **Reset angles** — reset of all Hall sensors angles. Select of values **On** and **Off**. \\ | + | If there is no speed switch, then mode 1 is the default. If the switch is connected to the On-board computer, it is necessary |
- | **Integration threshold** — analogue of Hall angles for sensorless engine control | + | |
- | **Hall adjust Ki** — the meaning of the coefficient | + | |
- | ==== Hall table ==== | + | ==== Modes setup ==== |
- | The **Controller** > **Motor Setup** > **Hall table** menu section shows the Hall indices and Hall angles for the two directions of rotation of the electric motor. These indices are used for the internal operation of the Controller. \\ | + | {{: |
- | {{:en: | + | The ** # Current mode ** line displays the currently selected control mode. List of possible options:\\ |
- | ~~CL~~ | + | **N** — neutral.\\ |
+ | **S1** — speed 1.\\ | ||
+ | **S2** — speed 2.\\ | ||
+ | **S3** — speed 3.\\ | ||
+ | **RV** — reverse. | ||
- | ==== Motor parameters | + | Four parameters |
+ | **Phase** — the maximum value of the phase current, in Amperes (**A**). Select of values from **0A** to **500A**, in increments of **2A**. When setting, consider the maximum phase current of your controller type. In most cases, we recommend specifying the value of the phase current 1.5-2 times higher than the battery current. | ||
- | Items in the **Controller** > **Motor setup** menu section allow you to configure | + | **Battery** — the maximum value of the battery current, in Amperes (**A**). Select of values from **2A** to **400A**, in increments of **2A**. When setting up, consider |
- | {{: | + | **Power** — maximum power (discharge) of the battery, in kilowatts (**kW**). Select of values from **0.00kW** to **30.0kW**, in increments of **0.1kW**. Set to 0.0kW to disable the power limiting limit. |
- | **Pole pair** — the number | + | **Speed** — maximum speed in percentage (%). Select |
- | **Spin direction** — this setting allows you to change the direction of rotation of the electric motor. Select of values **Forward** and **Invert**. Or you can swap two motor phases to change the direction of rotation.\\ | + | ==== Electric brake setup ==== |
- | **Integration thr.** — analogue | + | **Braking phase** — the value of the phase current of braking by the motor, in Amperes |
+ | ==== Braking phase at speed control ==== | ||
- | **Control mode now** — the current | + | **Braking ph. at speed** — phase braking |
- | **Control mode** — this parameter is loaded at start-up | + | Also to use this mode should be selected: |
+ | ==== Regenerative braking setting ==== | ||
- | | + | **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes |
- | * **Square** — outdated control method used only for motor detection. \\ | + | |
- | * **Combined** — start the motor on Hall sensors, then switch to sensorless mode, the threshold is determined by the parameter radians per second | + | |
- | * **FOC** — field-oriented control of the motor. \\ | + | |
- | * **Hz** — 3-phase square with a fixed frequency. \\ | + | |
- | * **Sine HZ** — 3-phase sine with a fixed frequency. \\ | + | |
- | **Interpolate halls** — smooth change | + | This function will be active if additional modes are disabled in the **Controller** > **Advanced modes** menu section or if, with activated additional modes, in one of the menu sections |
+ | ==== Reverse setup ==== | ||
- | **Interpolation start** — the motor is always started from a discrete angle, if digital halls are used. After the specified | + | **Speed reverse** — reverse |
- | **Frequency control** — a separate mode that can be used to power equipment through a transformer or to dry the varnish on the motor windings. Select of values from **10 HZ** to **200 HZ**, in increments of **1 HZ**. \\ | + | **Phase reverse** — the value of the reverse phase current, in Amperes (**A**). Select of values from **10A** to **500A**, in increments of **2A**. |
+ | ==== Field weakening setup ==== | ||
- | **Boost square current** — in the sensorless or square mode, applies 100% PWM at the beginning | + | **Field weakening** — the magnitude |
+ | <WRAP center round warning 60%> | ||
- | **Boost current** — setting refers to the control mode **Square**, the minimum current from which the rapid current pumping in the windings is turned on, in amperes (**А**). Select of values from **0A** to **100A**, in increments of **1A**. \\ | + | To set up the weakening, you need: |
- | **Boost speed** — setting refers to the control mode **Square**, the minimum speed after which the rapid pumping of current in the windings is turned on, in radians per second (**rad/s**). Select of values from **0.00rad/s** to **2.00rad/ | + | |
+ | * set the weakening | ||
- | **Max motor U** — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter | + | Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified |
- | **kV** — motor parameter, electric revolutions per volt (**eRPM/V**). | + | Also, the Controller will limit the speed of rotation of the motor so that its effective EMF does not exceed the maximum supply voltage of the controller |
- | ===== Battery ===== | + | ==== Current change speed ==== |
- | In the **Controller** > **Battery** menu section you can set up the parameters of the battery connected to the Controller. The Nucular controllers support supply voltages from **20V** to **90V**, this is **21S** for Lithium-ion (Li-ion) batteries and **25S** for Lithium-iron-phosphate (LiFePO4) batteries. To configure the battery, you must specify the range of supply voltage and current. To correctly display the battery capacity on the On-board computer screen and correctly calculate the remaining charge, you must specify the battery capacity in [[en: | + | **# Current change speed**. |
- | {{: | + | * acceleration, |
+ | * braking, select of values from **50A/ | ||
+ | * shutdown, select of values from **50A/ | ||
- | **Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, | + | Three parameters determine |
- | **Supply max** and **Supply min** — battery voltage range, in volts (**V**). Select values from **20.00V** to **95.00V**, in increments of **00.1V**. Also, these settings are used for the **Converter** mode. \\ | + | ===== Advanced control modes ===== |
- | For lithium-ion (Li-ion) batteries, | + | In the menu section |
- | For lithium-iron-phosphate (LiFePO4)-minimum **2.7V*S**, maximum **3.6V*S**. \\ | + | |
- | <WRAP center round important 60%> | + | {{: |
- | We guarantee stable operation of the Controller at voltages up to **90V** inclusive. Using a battery over 90V may damage the Controller and void the warranty. | + | |
- | </ | + | |
+ | To activate the control modes, select **Controller** | ||
- | **Charge max** — maximum battery charging current, during regeneration or in **Converter** mode, in amperes (**А**). Select values from **1.0A** to **400.0А**, in increments of **0.5А**. \\ | + | In the menu **Controller** > |
- | **Discharge max** — maximum continuous discharge current of the battery, but in boost mode, it can be more, check (Throttle control mode setup.), in amperes (**А**). Select values from **1.0A** to **400.0А**, | + | ~~CL~~ |
- | **Power max** — maximum continuous discharge power, | + | Each mode has its own section |
- | **# DC voltage** — current supply voltage | + | {{: |
- | ===== Converter ===== | + | **Acceleration lim.** |
- | In the menu section | + | **Braking phase** |
- | {{: | + | **Braking ph. at 0% throttle** |
- | **Enable** — turn on the converter | + | **Revers** — reverse gear activation when the control |
- | **Auto-enable** — allows the automatic start of charging when the charging PSU is connected to the controller. Select of values **On** | + | **Cruise** — activation |
- | **Detection threshold** — minimum voltage on phases when charger mode activates, also disables motor control, in volts per phase (**Vph**). Select of values | + | **Disable motor** — completely |
- | **Battery max I** — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select of values | + | **Disable throttle** — disable throttle control. Select of values **On** |
- | **Battery min I** — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values | + | **Active braking** — allow the brake to use the battery for stopping. Select of values **On** |
- | **Undercharge** — voltage relative to maximum battery voltage setup, in volts (**V**). Let's decrease | + | **Reverse on brake** — after stopping, pressing |
- | **Current drop delta** — decreases charging current down to **Battery min I** as the battery reaches maximum voltage on specified voltage range, in volts (**dV**). Select of values | + | **Speed lim. at 0% throttle** — allows limiting the speed when the throttle lever is released. Select of values **On** |
- | **Supply max I** — maximum power supply current, in amperes (**А**). Select of values | + | **Disable PAS** — disables the Pedal Assist. Select of values **On** |
- | **Supply drop U** — allowable voltage drop on wires or power supply, in volts (**V**). Select of values from **0.50 V** to **10.00 V**, in increments of **0.25 V**. \\ | + | **PAS Scale** — extra PAS multiplier for tuning, decreases PAS signal for smoother control |
- | **Max motor t°** — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select of values from **50°C** to **120°C**, in increments of **5°C**. \\ | + | ===== Control ===== |
- | Below in the menu section, through | + | In the **Controller** > |
- | **# Battery I** \\ | + | |
- | **# Battery U** \\ | + | |
- | **# Supply I** \\ | + | |
- | **# Supply U** \\ | + | |
- | After plugging in the power supply, the On-board Computer will display the battery charging process. | + | ==== PAS and Torque sensor setup ==== |
- | {{{: | + | In the menu section |
- | **-22.1A** — information line parameter, depending on the On-Board Computer settings. \\ | + | |
- | **0:0:58** — time elapsed since charging started, hours, minutes, seconds. \\ | + | |
- | **I24.9** — charging current, in Amperes | + | |
- | **U53.7** — charging voltage, in Volts (**V**). \\ | + | |
- | **The indication in the middle** is the temperature | + | ЧTo be able to connect the PAS system, it is necessary to order the PWM IO/PAS cable as an option. The PAS system connects to the Controller via the PWM IO/PAS wire to the **P1/ |
- | **Indication to the left:** \\ | + | You can look at the connecting methods of various PAS systems at **[[:en: |
- | **59.0V** — information line parameter, depending on the On-Board Computer settings. \\ | + | |
- | **15Wh** — the battery capacity in Watt hours (**Wh**). \\ | + | |
- | **100%** — the battery level, in percent (**%**). \\ | + | |
- | **I24.9** — the battery current, in Amperes (**A**). \\ | + | |
- | **U53.7** — the battery voltage, in Volts (**V**). \\ | + | |
+ | The PAS, unlike the Torque sensor, controls the throttle by frequency and not by the force of rotation. The PAS setup menu consists of the following items: | ||
- | ~~CL~~ \\ | + | {{: |
- | ===== I/O port configuration ===== | + | **PAS connection** |
- | In the **Controller** > **I/O configuration** menu section, you can configure | + | **# PAS freq.** — the value of the signal coming from the PAS in real-time. \\ **PAS timeout** |
- | Sixteen CAN ports are additionally available **CAN port 1** - **CAN port 16**, the signal source for which can be configured on the On-board computer or uLight. These are software values, there are fewer physical inputs on the boards, at the moment there are eight CAN ports **IO1** - **IO8** available in the On-board computer plus four Hotkeys | + | Further in the menu are the settings related to the pressure sensor |
- | {{: | + | **Pressure scale** |
- | In the section **Controller** > **I/O configuration** > **Port state**, you can check input activation when contact shorted to GND. When a signal is applied, the value will change from **0** to **1**. Below in the menu items **# Throttle** and **# Brake** you can see the voltage on the throttle and brake levers, respectively. | + | **# Torque** — shows the current torque at the sensor, in Newton-meters (Nm). |
- | ~~CL~~ \\ | + | |
- | In the item ** Controller | + | **# Human watt** — shows the average power you develop when pedaling, in watts (W). \\ **Human watt min** — the minimum power you develop to activate the motor, in watts (W). Select of values from **0 W** |
- | {{: | + | **Torque min** — the torque at which the throttle signal starts to increase, Newton-meters (Nm). Select of values from **0 Nm** to **100 Nm**, in increments of **2 Nm**. All values less than this level is 0% of throttle. \\ **Torque max** — the torque, which limits the level of 100% throttle, Newton-meters (Nm). Select of values from **0 Nm** to **300 Nm**, in increments of **2 Nm**. \\ **Instant Torque** |
- | Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M** and CAN ports **CAN port 1** - **CAN port 16**: \\ | + | ==== Remote control ==== |
- | **OFF** — disable port. \\ | + | |
- | **RV** — reverse. \\ | + | |
- | **CRe** — enable cruise. \\ | + | |
- | **CR+** — increment cruise speed (when cruise is active). \\ | + | |
- | **CR-** — decrement cruise speed (when cruise is active). \\ | + | |
- | **CRr** — restore last saved cruise speed with button, activated only above min cruise speed. \\ | + | |
- | **BK** — brake button. \\ | + | |
- | **DM** — disable motor (disable throttle, brake and PAS). \\ | + | |
- | **DTH** — disable throttle. \\ | + | |
- | **DPAS** — disable PAS. \\ | + | |
- | **SWSNS** — input for Gearsensor to reduce motor torque (WIP). In development. \\ | + | |
- | **N** — activates the neutral mode forcibly, resets speed mode counter if used. If neutral is activated by default, you need to change speed mode again to exit neutral. \\ | + | |
- | **nBK** — inverted brake button input, activates the brake when the contact is opened. \\ | + | |
- | **S1** — speed 1. \\ | + | |
- | **S2** — speed 2. \\ | + | |
- | **S3** — speed 3. \\ | + | |
- | **S1of3** — speed 1 for 3-position switch. \\ | + | |
- | **S3of3** — speed 3 for 3-position switch. \\ | + | |
- | **Scyc** — cycle speed mode, sequential switching with one button. \\ | + | |
- | **S++** — increment speed, switching the speed from low to high with one button. \\ | + | |
- | **S--** — decrement speedи, switching the speed from high to low with one button. \\ | + | |
- | **SPSNS** — input for external speed sensor. \\ | + | |
- | **Spec.** — special port function (like PWM or PAS). \\ | + | |
- | Further in the menu, there are items for configuring | + | The **Controller** |
- | ~~CL~~ \\ | + | |
- | ==== PWM output setup ==== | + | |
- | To activate the **PWM P1** or **PWM P2** output, the **Controller** > **Port Setup** menu should be set to **Spec.** mode and **PAS** disabled. \\ | + | {{: |
- | **PWM freq** — selection of frequency of additional | + | Input for radio control via PWM (PWM), connects to the **P1** |
- | **PWM P1** and **PWM Р2** — selection of operating modes: \\ | + | The **# Input Freq.** |
- | * **Disabled** — mode not selected. \\ | + | |
- | | + | |
- | * **Headlight** — activated when the controller is enabled. \\ | + | |
- | * **t°C motor** — activated beyond | + | |
- | * **t°C controller** — activated from 40°С, maximum value at 80°С temperature of the Controller. \\ | + | |
- | **PWM Pn Min** / **Max** — indicates the output range of the PWM (duty), select of values from **0%** to **100%**, in increments | + | In the menu item **Function** |
- | **PWM Pn t° Min** / **t° Max** — selection of motor or controller temperature, | + | |
- | ===== Extra parameters ===== | + | ~~CL~~ |
- | In the menu section **Controller** > **Extra parameters** you can set up various additional settings of the Controller. | + | \\ Adjust |
- | ==== The power button and auto shutdown ==== | + | **# Throttle range** \\ **Throttle min** — minimum throttle value, in milliseconds (ms). Select of values from **0.00 ms** to **10.00 ms**, in increments of **0.01 ms**. \\ **Throttle max** — maximum throttle value, in milliseconds (ms). Select of values from **0.00 ms** to **10.00 ms**, in increments of **0.01 ms**. |
- | The controller power button is located on the back of the On-Board Computer. In the **Controller** > **Extra parameters** > **Disable button** menu item, you can select the way to turn on/off the Controller, which turns on when it is powers-up or the button contacts are closed. In the off mode, the controller consumes about 100 μA, so if you reconnect the power supply without discharging the capacitors, the controller may not start. \\ | + | **# Brake range** \\ **Brake min** — minimum brake value, in milliseconds (ms). Select |
- | {{: | + | ==== Cruise control setup ==== |
- | Selecting modes for **Disable button**: \\ | + | In the menu section |
- | **None** — the controller turns on when it is power-up up or when the power button is closed, does not turn off. \\ | + | |
- | **Switch** — the controller turns on when the power button is closed (when EN shorted to GND), turns off when it opens. \\ | + | |
- | **Button** — the controller turns on the button on the On-Board Computer, press it for 2 seconds, and release, | + | |
- | **CAN** — the controller turns on when it is powers-up | + | |
- | **Auto shutdown** — activation | + | **CRe** — cruise |
- | **Sleep time** — selection of the controller shutdown time when the **Auto shutdown** function is activated, in seconds, (**s**). Select of values from **30s** | + | For more information about configuring these functions, read the **[[: |
- | **Lock at turn-on** — the function locks controller inputs when enabled until the password | + | {{: |
- | ==== Speedometer setup ==== | + | Next are the menu items for setting the cruise: |
- | The next block of settings in the menu section | + | **Cruise restore** — this function activates |
- | {{: | + | **Cruise EN time** |
- | **Speed calculation** — enabling | + | **Cruise level** — selects what speed cruise will use: |
- | **Circumference** — wheel circumference, in millimeters | + | |
+ | * **Speed** | ||
+ | * **Mixed** | ||
+ | **Cruise smoothness** | ||
- | **Motor sprocket** — this setting specifies | + | **# Used for cruise activation**: |
- | **Wheel sprocket** — the number of teeth of the wheel sprocket, similar to the setting | + | Additionally, |
- | If you have a wheel motor, then in the section **Controller** > **Motor setup** you need to specify the number of **Pole pair** (divide the number of magnets by two). For gear motors or mid-drives, it is recommended to install an external speed sensor that connects to the Onboard computer or to any of the controller ports. | + | What actions disable cruise control: |
- | ==== Master-controller ==== | + | * pressing the brake, analog or digital. |
+ | * repeated throttle press. | ||
+ | * if a switch is used — when it's disabled. | ||
+ | * reverse enable. | ||
- | {{: | + | ==== Throttle |
- | In the menu section **Controller** > **Extra parameters** > **Master-controller** you can enable the function of controlling other controllers from the current one. This setting is suitable for multi-motor configurations where control (throttle, brake and etc.) is connected into one of the controllers directly. | + | |
- | ~~CL~~ \\ | + | |
- | ==== Other settings | + | In the menu section **Controller** |
- | {{: | + | {{: |
- | **Limit t° CPU** — limiting the temperature of the processor, in degrees Celsius (**°C**). When the specified threshold is reached, the phase current will be limited. Select of values from **60°C** to **105°C**, in increments of **5°C**. \\ | + | |
- | ** Device ID** — setting the device number in the CAN network. This number is displayed in the menu section | + | You can select the following types of throttle and brake presets: \\ **Linear** — smooth increase, direct dependence. \\ **Exponential** — slow increase. \\ **Normal** — average between linear and exponential. \\ **Polynomial** |
- | ~~CL~~ | + | |
- | ===== PID regulators ===== | + | Manual setting of throttle and brake position points is also available, to do this select **None** |
- | In the **Controller** > **PID regulators** menu section, various signals | + | You can also manually edit the value of each point in the loaded preset. |
- | {{: | + | ~~CL~~ |
- | Two or three coefficients are used for the settings of each regulator: \\ | + | |
- | **Ki** — integral coefficient. \\ | + | |
- | **Кp** — proportional coefficient. \\ | + | |
- | **Kd** — differentiating coefficient. \\ | + | |
- | **Square Ki, Kp** — phase current regulator for a square wave. \\ | + | ==== Control source |
- | **FOC Ki, Kp** — phase current regulator for FOC mode. \\ | + | |
- | **FW Ki, Kp** — field weakening coefficients. \\ | + | |
- | **DCv Ki, Kp** — voltage regulator on the DC bus. \\ | + | |
- | **DCi Ki, Kp** — current regulator on the DC bus. \\ | + | |
- | **DCw Ki, Kp** — power calculator. \\ | + | |
- | **Speed Ki, Kp, Kd** — speed regulator for throttle control modes **Speed** and **Speed+torque**. \\ | + | |
- | **PLL Ki, Kp** — speed regulator for motor angle interpolation. \\ | + | |
- | **Acceleration Kp, Ki** — deceleration and acceleration regulator. | + | |
- | ~~CL~~ \\ | + | |
- | ===== Status flags ===== | + | |
- | The **Controller** > **Status Flags** menu section displays errors that may occur during the operation of the Controller. If an error occurs, the parameter value changes to **On**.\\ | + | The controller supports the connection of controls (throttle, brake, switches, and buttons) to the Controller, On-board computer, ulight board, or mixed connection when one part of the periphery is connected to the Controller, and the second part to the On-board computer, or to ulight and On-board computer. This is necessary in the case of Tork/PAS sensor configurations in the Controller throttle lever in the On-board computer. In the menu item **Controller** |
- | {{: | + | {{: |
- | **Reset?** — reset all statuses. Values **On** and **Off**. | + | Select of control options: |
- | **Max acceleration** — maximum acceleration, | + | |
- | **Min deceleration** — maximum deceleration, | + | |
- | **Overload current** — the last recorded current on the phases, in Amperes. \\ | + | |
- | **Overload** — exceeding the permissible current values. Values **On** and **Off**. \\ | + | |
- | **Over-Field weakening** — weakening error. Values **On** and **Off**. \\ | + | |
- | **Supply overvoltage** — too high supply voltage, the error will appear above 95V, but in general depends on the controller model. Values **On** | + | |
- | **Supply undervoltage** — too low supply voltage, less than the minimum battery supply threshold. Values **On** and **Off**. \\ | + | |
- | **12V protection** — breaking down or error on the 12V power line. Values **On** and **Off**. \\ | + | |
- | **Brake error** — brake lever connection error. Values **On** and **Off**. \\ | + | |
- | **Throttle error** — throttle lever connection error. Values **On** and **Off**. \\ | + | |
- | **Hall error** — Hall sensor connection error. Values **On** and **Off**. \\ | + | |
- | **Code error** — error executing firmware code. Values **On** and **Off**. Let us know if this error occurs. \\ | + | |
- | **PAS protection** — PAS error. Values **On** and **Off**. \\ | + | |
- | **Controller overheat** — overheat protection of the controller. Values **On** and **Off**. \\ | + | |
- | **Motor overheat** — overheating protection of the electric motor. Values **On** and **Off**. \\ | + | |
- | **Protection fail** — hardware error, malfunction of all protection systems during controller self-test. If this error occurs, the operation of the Controller will be impossible. Values **On** and **Off**. \\ | + | |
- | **Voltage on phases** — overvoltage on phases. Values **On** and **Off**. \\ | + | |
- | **CAN: error** — CAN-bus errors. Values **On** and **Off**. Let us know if this error occurs. \\ | + | |
- | **LEC** — types of errors on the CAN bus. If everything | + | |
- | **Receive w/error** — CAN-bus errors on receiving. \\ | + | |
- | **Sent w/error** — CAN-bus errors on transmitting. \\ | + | |
- | **CAN state** — overloading buffers. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **OVR0**, **OVR1**, **OVR01**. Tell us the code if this error occurs. \\ | + | |
- | **CPU Load** — current load of the central processor, in percentage (**%**). | + | |
- | ===== Debug information ===== | + | ~~CL~~ |
- | The menu section **Controller** > **Debug information** shows the main parameters of your Controller, electric motor, and the whole system - temperature, | + | ==== Throttle control mode setup ==== |
- | {{: | + | The menu item **Controller** |
- | **Temp FET** — temperature of the field-effect transistors (MOSFETs) of the Controller, in degrees Celsius (**°C**). \\ | + | {{:en:controller:6_0.8.png? |
- | **Temp Motor** — temperature of the electric motor, in degrees Celsius (**°C**). \\ | + | |
- | **DC current** — DC current, in amperes (**А**). \\ | + | |
- | **DC voltage** — DC voltage, in volts (**V**). \\ | + | |
- | **AC current** — AC current, in amperes (**А**). \\ | + | |
- | **AC voltage** — AC voltage, in volts (**V**). \\ | + | |
- | **Motor U0** — DC voltage on phases, in volts (**V**). \\ | + | |
- | **System 12V** — voltage on the CAN bus 12V, in volts (**V**). \\ | + | |
- | **System 5V** — voltage on the CAN bus 5V, in volts (**V**). \\ | + | |
- | **RPM** — motor speed, in RPM (**RPM**). \\ | + | |
- | **ERPM** — electric revolutions of the motor per minute (**ERPM**). \\ | + | |
- | **Hall input** — this parameter allows you to check the functionality of the Hall sensors. There are three digits in this item, each shows the signal level, if you rotate the motor slowly by hand, all three digits should change. If none of the digits change, check if the Hall connector is connected or the ground may be broken. If one of the digits does not change - there is no contact or the sensor wire is broken. To check the contacts in the controller, disconnect the Hall connector and measure the voltages on the controller connector. There should be about 4V on the signal lines of the Halls, 5V on the power supply, and about 3V on the temperature sensor line. \\ | + | |
- | **Hall index** — virtual position of the motor, digits from 1 to 6 (normal operation). \\ | + | |
- | **Throttle %** — the percentage of how much the throttle is pressed. \\ | + | |
- | **Brake %** — the percentage of how much the brake is pressed. \\ | + | |
- | **Speed request** — set point for the speed regulator, in eRPM. \\ | + | |
- | **Torque request** — phase current request, either positive throttle or a negative brake. \\ | + | |
- | **Torque limit** — current limit for this type of controller, taking into account overheating. \\ | + | |
- | **Temp CPU** — CPU temperature, | + | |
- | Next in the menu are the sections | + | Three throttle modes options are available: \\ **Speed** |
- | + | ||
- | ==== Debug FOC ==== | + | |
- | In the menu section | + | In the case of selecting the **Speed torque** mode, pressing throttle to 50%, when achieved 50% speed, the current consumption will be reduced to hold speed. The acceleration current will also be proportionally lower. |
- | {{: | + | ==== Throttle and brake voltage range setup ==== |
- | **U Q** — Q-axis voltage, | + | The menu items in the **Controller** > |
- | **U D** — D-axis | + | |
- | **I Q** — Q-axis current, in amperes (**А**). \\ | + | |
- | **I D** — D-axis current, in amperes (**А**). \\ | + | |
- | **Ireqest Q** — Q-axis current request, in amperes (**А**). \\ | + | |
- | **Ireqest D** — D-axis current request, in amperes (**А**). | + | |
- | ~~CL~~ \\ | + | |
- | ==== Remote inputs ==== | + | |
- | In the menu section **Controller** > **Debug information** > **Remote inputs** you can view the parameters of the throttle and brake levers connected to other devices connected to the CAN-bus (On-board computer or uLight). \\ | + | {{: |
- | {{: | + | Currently, voltage settings for all throttles and brakes are common. \\ **# Throttle** |
- | **Throttle** — voltage on the throttle | + | |
- | **Brake** — voltage at the brake lever at a remote source (On-board computer or uLight), in volts (**V**). \\ | + | |
- | **Throttle % **— the percentage | + | |
- | **Brake %** — the percentage of how much the brake pressed at a remote source. | + | |
- | ~~CL~~ \\ | + | |
- | ===== Logger ===== | + | |
- | In the **Controller | + | **# Brake** — shows the voltage of the brake connected to the controller, in volts (V). \\ **Brake min** and **Brake max** — range of the analog brake lever, in millivolts (mV). Select of values from **0 mV** to **15 000 mV**, in increments of **10 mV**. |
- | {{:en:controller:k33_en.png? | + | **Brake button power** |
- | **Start logging** — to start recording, select **On** and press the right button of the On-board computer. After that, the **#State** menu item will change to **Waiting** status. The recording will start automatically after pressing the throttle grip. If an error occurs during the recording process, you will see its code in the ** # Error code ** menu item. In case of an error, firstly, check that the SD card has the FAT32 file system, and secondly, that there is free space on the SD card for recording. Additionally, | + | ==== Setup 100% speed value ==== |
- | **Stop logging** — stop recording, select | + | The menu items in the **Controller** > |
- | ~~CL~~ \\ | + | |
- | **Start | + | |
- | * **Manual** — enable manual recording. | + | |
- | * **At start** — recording starts automatically when the Controller | + | |
- | **Log time** — two parameters of time for recording to choose from: | + | {{:en:controller:k14_en.png? |
- | * **Time step** — delta of time since the previous record. | + | |
- | * **Sys time** — global time, which is incremented after the start of the controller. | + | |
- | **Log rate** — delay between records | + | **Speed ref. filter** — filter mode selection. Select |
- | **Mode** — recording mode selection: | + | **Filter factor** |
- | * **Buffered** — buffering and recording in segments. | + | |
- | * **Max rate** — continuous recording mode. | + | |
- | **Data averaging** — using filters while recording: | + | **Speed mode** |
- | * **None** | + | |
- | * **Fast** — slight averaging (smoothes values). | + | |
- | * **Slow** — large averaging. | + | |
- | Next, in the **# Data to log** menu sections, you can select the set of parameters you want to record. Select **On** to enable parameter recording. | + | * **OFF** |
+ | * **Middle U bat** — the average value between the minimum and maximum voltage of the battery settings used as speed reference, depending on motor kV. | ||
+ | * **U supply** | ||
+ | * **Ref. speed** | ||
+ | | ||
+ | **Minimum speed** | ||
- | **# Data to log**: \\ | + | **Speed lim. at 0% throttle** |
- | **Battery Voltage** — battery voltage data logging. \\ | + | |
- | **Battery Current** — battery current data logging. \\ | + | |
- | **Motor Voltage** — motor voltage data logging. \\ | + | |
- | **Motor Current** — motor current data logging. \\ | + | |
- | **Wheel speed** — wheel speed data logging. \\ | + | |
- | **Throttle** — throttle | + | |
- | **Brake** — brake lever data logging. \\ | + | |
- | **Motor rad/s** — data logging of the angular | + | |
- | **Motor RPM** — data logging | + | |
- | **Tmotor °C** — data logging of the electric motor temperature. \\ | + | |
- | **Tfet °C** — data logging the temperature of field-effect transistors. \\ | + | |
- | **Raw hall input** — data logging the input status from Hall sensors without filter. \\ | + | |
- | **Hall index** — virtual position of motor. \\ | + | |
- | **FOC Vq** — Q-axis voltage data logging. \\ | + | |
- | **FOC Vd** — D-axis voltage data logging. \\ | + | |
- | **FOC Iq** — Q-axis current data logging. \\ | + | |
- | **FOC Id** — D-axis current data logging. \\ | + | |
- | **Current phA** — data logging | + | |
- | **Current phB** — data logging the current on the B phase of the electric motor. \\ | + | |
- | **Current phC** — data logging the current on the С phase of the electric motor. | + | |
- | ===== Device information | + | ===== Motor setup ===== |
- | In the menu section | + | The **Controller** |
- | {{: | + | ==== Motor temperature sensor ==== |
- | **Micro Nucular | + | In the menu section |
- | **Max supply** — 95V. The warranty covers supply voltages up to **90V** inclusive. \\ | + | |
- | **Max current** — the value of the maximum phase current, depending on the type of Controller, in amperes (A). \\ | + | |
- | **Firmware date** — firmware compilation date. \\ | + | |
- | **Firmware ver.** — version of the installed firmware, | + | |
- | **Loader date** — the data loader compilation date. \\ | + | |
- | **Loader version** — data loader version. \\ | + | |
- | **Worked** — operating time of the Controller in kilowatt-hours (kW*h). \\ | + | |
- | **t° middle 100 h** — the average | + | |
- | **t° middle** — the average temperature of the Сontroller over all time. \\ | + | |
- | **Current protections** — the number of triggered overcurrent protections over all time of operation of the controller. \\ | + | |
- | **Temperature protections** — the number of triggered temperature protections over all time of operation of the controller. \\ | + | |
- | **Voltage protections** — the number of triggered voltage protections over all time of operation of the controller. \\ | + | |
- | **Power cycle** — number of controller switching on. \\ | + | |
- | **Power-on time** — total operating time of the Controller, minutes, hours, days. | + | |
+ | {{: | ||
- | ====== Controller | + | **°t max** — maximum electric motor temperature, |
- | The controller allows | + | In the menu item **Sensor type** |
- | //Technical specifications | + | It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, you can check all types of sensors and select the one that displays data the most closely to room temperature. The current measured temperature is displayed at **# Value °t**. |
- | ^ Parameters | + | The **# °t resistance** |
- | ^Maximum power| | + | |
- | ^Nominal power| | + | |
- | ^Voltage range| | + | |
- | ^Phase current, max| 120A | 250А | 500А | | + | |
- | ^Battery current, max| ~90A | ~150A | ~300A | | + | |
- | ^Supply out| 12В 3A ||| | + | |
- | ^Operating temperature range| | + | |
- | ^Phase wires| | + | |
- | ^Battery wires| | + | |
- | ^Hall connectors| | + | |
- | ^Wires length| | + | |
- | ^Control modes| | + | |
- | ^Protection| | + | |
- | ^Sleep current less| < | + | |
- | ^Protection class| | + | |
- | ^Size, without wires| | + | |
- | ^Weight| | + | |
- | ^Warranty| | + | |
- | //In the kit: // | + | ==== Clutch ==== |
- | | + | In the menu section |
- | | + | |
- | | + | |
- | | + | |
- | Phase, battery, and Hall sensors wires are supplied with connectors, depending on the type and specification of the controller | + | {{:en:controller:k16_en.png? |
- | // | + | The parameter **Mode** |
- | | + | **# Phase amps** \\ **Start time** |
- | | + | |
- | | + | |
- | ===== Connection diagram ===== | + | **Hold time** |
- | First, connect the three phases of the electric | + | <WRAP center round tip 60%> \\ Optimal settings for MAC motor: **Accelerate**, 15a, 50V/s, 200ms.</ |
- | When the power is turned on for the first time, the controller will start automatically. To enable/ | + | ==== Setup the motor position sensors ==== |
- | You can find the wiring diagrams of the other devices on this [[https:// | + | Under the menu section |
- | If you want to connect peripherals directly to the Controller, you need to order " | + | {{: |
+ | **Sensor type** | ||
- | {{:en: | + | **Sensor mode** |
- | ~~CL~~ | + | |
- | ===== Connecting multiple controllers ===== | + | **Interpolate sensors** |
- | If you want to connect two or more Controllers, | + | **Interpolation start** |
- | For example, for a two-motor connection scheme, which is used on all-wheel-drive electric scooters, in addition | + | **Frequency control** |
- | <WRAP center round important 60%>\\ | + | ==== Hall sensors setup ==== |
- | Pay attention to the connection diagram. ** Do not disconnect power grounds when system wires are connected! ** | + | |
- | First connect all power wires and only then CAN wires. When disconnecting the controllers, | + | |
- | </ | + | |
- | {{: | + | Further in the menu section **Controller** |
+ | {{: | ||
- | ====== How to start? ====== | + | **Hall filter** |
- | After you have connected | + | **State filter** |
- | {{: | + | **Direction filter** — select the delay time for changing the direction of rotation of the electric motor (forward/ |
- | After configuring | + | **Idle filter** — when the motor is not moving, the sensor position is reset to the middle position. Selection of values from **10ms** to **1000ms**, in **5ms** increments. |
- | ====== Menu navigation ====== | + | The next menu sections shows the Hall indices and Hall angles for the two directions of rotation of the electric motor. These indices are used for the internal operation of the Controller. |
- | Use the On-board computer buttons to navigate through the menus. Left button — return to the previous menu or cancel editing. Right button — go to the menu section and confirm the parameter selection. The two middle buttons — to move up/down through the menu and select the value of the menu item.\\ | + | ~~CL~~ |
- | ===== Settings saving ===== | + | ==== Manual setup the Hall sensors angles |
- | In the menu item **Controller** > **Save settings** | + | In general, it is not recommended to change these settings manually! \\ In the menu section |
- | ===== Auto-setup ===== | + | {{: |
- | The auto-setup function | + | **Offset for square** |
- | {{: | + | To shift all the halls, you must press the right button of the On-board computer, enter the shift angle, press the right button again. The value will be reset and the angle of all halls will change to the specified value. You can change the angle of the hall shift in the opposite direction by setting a negative value. |
- | The auto-setup menu starts the subprogram | + | **Reset angles** |
- | Once you have specified the battery supply voltage in the **Controller** > **Battery** section, you can proceed to calibrate the motor and levers in the Auto-setup section. | + | ==== Encoder |
- | Before auto-setup | + | In the menu **Controller** |
- | \\ | + | **Note:** on older controllers encoder use **P1** input as PWM for initial position detection, setup ports **P1 (I5)** |
- | <WRAP center round important 60%>\\ | + | |
- | **Be careful! Before running autotuning, check that the drive wheels of your e-bike are not touching | + | |
- | </ | + | |
- | If you have a throttle lever and an analog brake connected, then you need to enable Full Setup, and follow | + | Wiring |
- | If only one throttle lever is connected, you must independently turn on the items step-by-step: Throttle, Motor, Angle correction. When you enable each of the menu items, the hints will be displayed. Auto-setup function **Motor LR** detects the inductance and resistance of the motor. You can see the measurement results in the menu section **Controller** > **Motor setup**, items **Phase resistance**, | + | {{:en: |
- | If the motor is heavy and autodetect does not happen, you can gently push it with your hand or increase the tuning current | + | **Steps** |
- | If the motor is rotating in the wrong direction, go to **Controller** > **Auto-setup** > **Spin direction** and change the direction of rotation. You can choose from two options **Forward** or **Invert**. A similar setting is available in the **Controller** > **Motor setup**> **Spin direction** menu. It doesn' | + | == Debug information == |
- | If an error occurs during autotuning, see the section | + | **Index** — encoder index signal value. \\ **Z-Index** |
- | ===== Firmware update ===== | + | ==== Motor parameters |
- | In the menu section | + | Items in the **Controller** |
- | {{: | + | {{: |
- | **Import config.** — loads the settings from the file ** NCconf.cfg ** - ** NCconf9.cfg ** up to a maximum | + | **Pole pair** — the number of magnetic pole pairs of the rotor of the electric motor determines |
- | **Export config.** - saves the settings to the ** NCconf.cfg ** - ** NCconf9.cfg ** file up to a maximum | + | |
- | **Reboot** — restarts | + | |
- | **Reset Wh usage** — resets the accumulated number of Watt-Hours in the controller. This indicator is displayed in the statistics of the On-board computer, see section **[[en: | + | |
- | **Reset stats** — resets mileage in kilometers.\\ \\ | + | |
- | **Load defaults** — after a reset, the default settings are loaded but not saved. If you restart | + | |
- | **Erase data storage** — This function may be needed | + | |
- | **Update firmware** — starting the firmware update process. You can download the current firmware version and read the rules of update | + | |
- | ===== Control modes ===== | + | **Spin direction** |
- | In the menu section | + | **Integration thr.** |
- | If there is no speed switch, then mode 1 is the default. If the switch is connected to the On-board computer, it is necessary to configure | + | **Control |
- | ==== Modes setup ==== | + | The control mode selected in this menu is the priority setting for the controller. If the Hall sensor mode is selected in the **Controller** |
- | {{: | + | **Max motor U** — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter is not needed. Select of values from **0V** |
- | The ** # Current mode ** line displays the currently selected control mode. List of possible options: \\ | + | **kV** — motor parameter, electric revolutions per volt (**eRPM/V**). |
- | **N** — neutral. \\ | + | |
- | **S1** — speed 1. \\ | + | |
- | **S2** — speed 2. \\ | + | |
- | **S3** — speed 3. \\ | + | |
- | **RV** — reverse. \\ | + | |
- | Four parameters | + | Next are the menu items for configuring |
- | **Phase** — the maximum value of the phase current, in Amperes (**A**). Select of values from **0A** | + | |
- | **Battery** — the maximum value of the battery current, in Amperes | + | **Phase resistance** — the result |
- | **Power** — maximum power (discharge) | + | **Inductance d** — the result |
- | **Speed** — maximum speed in percentage | + | **Inductance q** — the result of measuring the inductance of the electric motor along the q axis during auto-setup |
- | ==== Electric brake setup ==== | + | **Flux linkage** |
- | **Braking phase** — the value of the phase current of braking by the motor, in Amperes | + | **MTPA (IPM Motor)** — enable |
- | ==== Braking phase at speed control ==== | + | **FOC Vq limit** — improves field weakening on some motors. Select of values **On** and **Off**. |
- | **Braking ph. at speed** | + | **# Square wave settings:** \\ **Square offset** |
- | Also to use this mode should be selected: | + | ===== Battery ===== |
- | **Speed** or **Speed and Torque** mode in the **Controller** > **Control** > **Throttle Mode** menu item. | + | |
- | In the menu item **Controller** > **Control** > **Speed lim. at 0% throttle** enable the speed limit at 0% throttle (optional), enable if you need braking with completely released throttle. \\ | + | |
- | ==== Regenerative braking setting ==== | + | In the **Controller** |
- | **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments of **2A**. This function allows regenerative braking to be initiated when the throttle is released. \\ | + | {{: |
- | This function will be active if additional modes are disabled in the **Controller** > **Advanced modes** menu section or if, with activated additional modes, in one of the menu sections | + | **Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, |
- | ==== Reverse setup ==== | + | |
- | **Speed reverse** — reverse speed, in percentage | + | **Supply max** and **Supply min** |
- | **Phase reverse** — the value of the reverse phase current, in Amperes (**A**). Select of values from **10A** to **500A**, in increments of **2A**.\\ | + | For lithium-ion (Li-ion) batteries, the minimum can be considered |
+ | <WRAP center round important 60%> We guarantee stable operation of the Controller at voltages up to **90V** | ||
- | ==== Field weakening setup ==== | + | **Charge max** — maximum battery charging current, during regeneration or in **Converter** |
- | **Field weakening** — the magnitude | + | **Discharge max** — maximum continuous discharge current |
- | <WRAP center round info 60%>\\ | + | **Power max** — maximum continuous discharge power, in watts (**W**). Set 0W to deactivate power limit. Select values from **0W** |
- | The current of weakening creates a field that acts against the field of the permanent magnets. The superposition of these fields creates an equivalent field that is below nominal. The attenuation efficiency depends on the parameters | + | |
- | </ | + | |
- | To set up the weakening, you need: | + | **# DC voltage** |
- | | + | |
- | * set the weakening | + | |
- | Field weakening is activated when the maximum speed is reached, the Controller adds weakening current, limiting the phase current and weakening current specified in the control mode. That is if the effective phase current is 70A, and the weakening current is set to 30A, then a minimum of 100A must be specified in the phase current settings. If the phase current increases to 80A, then only 20A will remain for weakening because 80A + 20A = 100A.\\ | + | ===== Converter ===== |
- | Also, the Controller | + | In the menu section **Controller** > **Converter**, |
- | ==== Current change speed ==== | + | {{: |
- | **# Current change speed**. | + | **Enable** |
- | * acceleration, | + | |
- | * braking, select | + | |
- | * shutdown, select of values from **50A/s** to **50000A/ | + | |
- | Three parameters determine the rate of change of the current (smoothness). The higher the value, the faster the current build-up in the motor will occur. For conventional brake levers, it will be useful to reduce the parameter | + | **Auto-enable** — allows the automatic start of charging when the charging PSU is connected |
- | ===== Advanced | + | **Detection threshold** |
- | In the menu section | + | **Battery max I** — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select |
- | {{: | + | **Battery min I** — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values from **0.5А** |
- | To activate the control modes, select | + | **Undercharge** — voltage relative to maximum battery voltage setup, in volts (**V**). Let's decrease the full charge voltage. Select of values from **0.00V** to **10.0V**, in increments of **0.1V**. |
- | In the menu **Controller** > **Advanced modes** > **Neutral by default** you can activate the neutral mode (N) when the controller starts up, which will be active until one of the speed modes is activated. In a neutral mode, only the electric brake operates, throttle and PAS are disabled. This mode is recommended for use with speed buttons (not a switch). The function does not work with a 3-position switch (functions | + | **Current drop delta** — decreases charging current down to **Battery min I** as the battery reaches maximum voltage on specified voltage range, in volts (**dV**). Select |
- | ~~CL~~ \\ | + | |
- | Each mode has its own section | + | **Supply max I** — maximum power supply current, |
- | {{: | + | **Supply drop U** — allowable voltage drop on wires or power supply, in volts (**V**). Select |
- | **Throttle mode** — selection of the operating mode of the throttle lever, read more in the section | + | |
- | **Acceleration lim.** and **Deceleration lim.** — are specified in ERPM/s, select | + | **Max motor t°** — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select |
- | **Braking ph. at 0% throttle** — phase braking current with the throttle handle released, in Amperes (A). Select of values from **0A** to **500A**, in increments | + | Below in the menu section, through the **#** sign, the real-time values |
- | **Revers** — reverse gear activation when the control mode is selected. Select of values **On** or **Off**. \\ | + | After plugging in the power supply, |
- | **Cruise** — activation of the cruise function. Select of values | + | {{: |
- | **Disable motor** — completely disables | + | **The indication in the middle** is the temperature of the motor and the controller, respectively, |
- | **Disable throttle** — disable throttle control. Select of values | + | **Indication to the left:** \\ **59.0V** — information line parameter, depending on the On-Board Computer settings. \\ **15Wh** — the battery capacity in Watt hours (**Wh**). \\ **100%** |
- | **Active braking** — allow the brake to use the battery for stopping. Select of values **On** or **Off**. \\ | + | ~~CL~~ |
- | **Reverse on brake** — after stopping, pressing the brake lever again activates reverse speed. Select of values **On** or **Off**. \\ | + | ===== I/O port configuration ===== |
- | **Speed lim. at 0% throttle** — allows limiting the speed when the throttle lever is released. Select of values | + | In the **Controller** > **I/O configuration** |
- | **Disable PAS** — disables | + | Sixteen CAN ports are additionally available |
- | **PAS Scale** — extra PAS multiplier for tuning, decreases PAS signal for smoother control on high power modes. Select of values from **1%** to **100%**, in increments of **1%**. | + | {{: |
- | ===== Control ====== | + | In the section |
- | In the **Controller** > **Control** menu section | + | |
- | ==== PAS and Torque sensor setup ==== | + | If the controls are connected to the On-board computer, then it is necessary to check the activation when contact shorted to GND in the **On-board computer** |
- | In the menu section **Controller** > **Control** > **Pedal Assist System** you can set up the Pedal Assist System (PAS), which connects the electric motor when pedaling. \\ | + | ~~CL~~ |
- | ЧTo be able to connect the PAS system, it is necessary to order the PWM IO/PAS cable as an option. The PAS system connects to the Controller | + | In the item ** Controller **> **I/O configuration** > **Speeds mode** |
- | You can look at the connecting methods of various PAS systems at **[[en: | + | {{:en: |
- | The PAS, unlike | + | Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M** and CAN ports **CAN port 1** - **CAN port 16**: \\ **OFF** |
- | {{: | + | Further in the menu, there are items for configuring the PWM outputs. |
- | **PAS** — selection of pedaling assistant type **PAS sensor** or **Torque sensor**. If there is no PAS system, select **Disabled**.\\ | + | |
- | **PAS connection** — 1-wire or 2-wire connection option, two wires are used for the angle sensor (encoder). \\ | + | ~~CL~~ |
- | **Invert PAS** — change of direction in case of 2-wire connection. Select of values **On** or **Off**. \\ | + | |
- | **PAS poles** — number of impulses per pedal revolution. Select of values from **1** to **200**, in increments of **1**.\\ | + | |
- | **PAS min. freq.** — the minimum pedal speed (cadence) at which the motor starts, RPM. Select of values from **1 RPM** to **500 RPM**, in increments of **1 RPM**. \\ | + | |
- | **PAS max freq.** — the maximum pedal speed (cadence) at which the motor starts, RPM. Select of values from **10 RPM** to **1000 RPM**, in increments of **5 RPM**. \\ | + | |
- | **# PAS freq.** — the value of the signal coming from the PAS in real-time. \\ | + | ==== PWM output setup ==== |
- | **PAS timeout** — the time after which the motor turns off after stopping pedaling, in seconds (s). Select of values from **0.02s** to **5.00s**, in increments of **0.02s**. \\ | + | |
- | **PAS filter** — smoothing the control signal for smoother operation, in hertz (Hz). Select of values from **1 Hz** to **100 Hz**, in increments of **1 Hz**. \\ | + | |
- | **PAS min out** — minimum control level when PAS is running, in percent (%). Select value from **0%** to **100%**, in increments of **1%**. \\ | + | |
- | **PAS max out** — maximum control level, in percent (%). Select of values from **0%** to **100%**, in increments of **1%**. By analogy with the “pressed” throttle, PAS sends a signal within the specified limits. \\ | + | |
- | Further in the menu are the settings related | + | To activate |
- | **Pressure scale** — in Newton-meters/ | + | **PWM freq** — selection of frequency of additional PWM output |
- | **Zero pressure** — zero pressure, in millivolts (mV). Select of values | + | |
- | **Protection pressure** — switching off the pressure sensor when the threshold of the specified value is exceeded, in millivolts (mV). Select of values from **0mV** to **10000mV**, in increments of **100mV**. \\ | + | |
- | **Torque averaging** — period for which is torque value updated. Measured in half turns (turn/2). If the torque sensor measures only one pedal, then the period must be a multiple of two. Select of values from **1 turn/2** to **20 turn/2**, in increments of **1 turn/2**. \\ | + | |
- | **# Torque** — shows the current torque at the sensor, in Newton-meters (Nm). \\ | + | **PWM P1** and **PWM Р2** |
- | **# Human watt** — shows the average power you develop | + | |
- | **Human watt min** — the minimum power you develop to activate | + | * **Stop-light** |
- | **Human watt max** — the maximum power for 100% activation, in watts (W). Select | + | * **Headlight** |
+ | * **t°C motor** | ||
+ | * **t°C controller** | ||
+ | **PWM Pn Min** / **Max** | ||
- | **Torque min** — the torque at which the throttle signal starts to increase, Newton-meters (Nm). Select of values from **0 Nm** to **100 Nm**, in increments of **2 Nm**. All values less than this level is 0% of throttle. \\ | + | ===== Extra parameters ===== |
- | **Torque max** — the torque, which limits the level of 100% throttle, Newton-meters (Nm). Select of values from **0 Nm** to **300 Nm**, in increments of **2 Nm**. \\ | + | |
- | **Instant Torque** — allows torque sensor activation without rotation. Select of values **On** or **Off**. The pressure sensor also includes frequency configuration and output level configuration as well as the usual PAS. | + | |
- | ==== Remote control ==== | + | In the menu section **Controller** |
- | The **Controller** > **Control** > **RC Control** menu section allows you to configure the remote control of the Controller using an external RC receiver. \\ | + | ==== The power button and auto shutdown ==== |
- | {{:en:controller:k8_en.png?nolink |}} | + | The controller |
- | Input for radio control via PWM (PWM), connects to the **P1** port of the **USB/PWM** connector on the Controller board. To activate the function, select the **PWM** value in the **P1 Input Mode** menu item. \\ | + | {{: |
- | The **# Input Freq.** and **# Width** menu items show the current signal value in hertz (**Hz**) and milliseconds | + | Selecting modes for **Disable button**: \\ **None** |
- | In the menu item **Function** selects | + | **Auto shutdown** — activation of the controller shutdown |
- | ~~CL~~ \\ | + | |
- | Adjust the throttle and/or brake range as indicated by the signal.\\ | + | |
- | **# Throttle range** \\ | + | **Sleep time** — selection |
- | **Throttle min** — minimum throttle value, in milliseconds (ms). Select | + | |
- | **Throttle max** — maximum throttle value, in milliseconds | + | |
- | + | ||
- | **# Brake range** \\ | + | |
- | **Brake min** — minimum brake value, in milliseconds (ms). Select of values from **0.00 ms** to **10.00 ms**, in increments of **0.01 ms**. \\ | + | |
- | **Brake max** — maximum brake value, in milliseconds (ms). Select of values from **0.00 ms** to **10.00 ms**, in increments of **0.01 ms**. | + | |
- | ==== Cruise control setup ==== | + | **Lock at turn-on** |
- | In the menu section **Controller** > **Control** > **Cruise** you can set up the cruise control function. After connecting buttons or switches for cruise control to the ports of the Controller or Onboard Computer, you need to configure the functions that relate to cruise control:\\ | + | ==== Speedometer setup ==== |
- | **CRe** — cruise activation. \\ | + | The next block of settings in the menu section |
- | **CR+** — increase cruise | + | |
- | **CR-** — decrease cruise speed (when active). \\ | + | |
- | **CRr** — restoring cruise (turning on the last saved speed). \\ | + | |
- | For more information about configuring these functions, read the **[[en: | + | {{:en: |
- | {{: | + | **Speed calculation** — enabling speed calculation in the Controller. Useful for multi-motor configurations, you can turn off the speed calculation |
- | In the **Cruise** menu item, you can select several control modes: \\ | + | |
- | **Disabled** — cruise control disabled. \\ | + | |
- | **Button** — activation of cruise control at the push of a button. The response time of the button is determined by the parameter **Cruise EN time**. \\ | + | |
- | **Switch** — activation of cruise control by turning | + | |
- | **Throttle hold** — activation of cruise control by holding the throttle for a certain time in one position. The response time is determined by the parameter **Cruise EN time**. The accuracy is set by the parameter **Cruise by throttle** in percent (%). Select of values | + | |
- | **Allow Throttle hold** — similar to the previous mode, with the difference that to activate the cruise control, you must additionally press the cruise button. \\ | + | |
- | Next are the menu items for setting the cruise: | + | **Circumference** |
- | **Cruise restore** — this function activates | + | **Motor sprocket** — this setting specifies |
- | **Cruise EN time** — setting | + | **Wheel sprocket** — the number |
- | **Cruise level** — selects what speed cruise will use: \\ | + | If you have a wheel motor, then in the section |
- | * **Throttle** — speed depends on the position | + | |
- | | + | |
- | * **Mixed** — if controller | + | |
- | **Cruise smoothness** — this setting limits acceleration during cruising so that there are no jerks, measured in electrical revolutions per minute per second (ERPM/s). To get the value in rpm, the ERPM/s value must be divided by the number of pole pairs of the electric motor. Select of values from **0 ERPM/s** to **50000 ERPM/s**, in increments of **50 ERPM/s**. \\ | + | ==== Master-controller ==== |
- | **# Used for cruise activation**: \\ | + | {{:en: |
- | **Safe acceleration** — limits | + | |
- | **Min. speed** — speed below which you can not activate cruise or recovery, in kilometers per hour (km/h). Select | + | |
- | Additionally, | + | ~~CL~~ |
- | What actions disable cruise control: | + | ==== Other settings ==== |
- | * pressing the brake, analog or digital. | + | |
- | * repeated throttle press. | + | |
- | * if a switch is used — when it's disabled. | + | |
- | * reverse enable. | + | |
+ | {{: | ||
- | ==== Throttle and brake curves setup ==== | + | **Device ID** — setting the Controller number in the CAN network. This number is displayed in the menu section **Settings** |
- | In the menu section | + | **Prefix 1** and **Prefix 2** — controller name setting for multi-motor configurations. Using the prefixes together or separately, you can specify where the electric motor that the Controller |
- | {{:en:controller:k10_en.png?nolink |}} | + | For example, you have a 2WD scooter and two 12F controllers, |
- | You can select | + | If you are using a 3WD drive or more, then both prefixes must be used for the controller name. For example, if the controller is driving a rear right motor, |
- | **Linear** — smooth increase, direct dependence. \\ | + | |
- | **Exponential** — slow increase. \\ | + | |
- | **Normal** — average between linear and exponential. \\ | + | |
- | **Polynomial** — average between normal and exponential. \\ | + | |
- | Manual setting of throttle and brake position points is also available, to do this select **None** in **Throttle preset** or **Brake preset** and enter the value manually. There are eight position points available for throttle and brake:: \\ | + | ===== PID regulators ===== |
- | **Start** — starting point, in percentages (%). Select of values from **0%** to **100%**, in increments of **1%**. \\ | + | |
- | **1**-**6** — midpoints, in percentages (%). Select of values from **0%** to **100%**, in increments of **1%**. \\ | + | |
- | **End** — end point, in percentages (%). Select of values from **0%** to **100%**, in increments of **1%**. \\ | + | |
- | You can also manually edit the value of each point in the loaded preset. | + | In the **Controller** |
- | ~~CL~~ \\ | + | |
- | ==== Control source ==== | + | |
- | The controller | + | {{:en:controller: |
- | {{: | + | **Square Ki, Kp** — phase current regulator for a square wave. \\ **FOC Ki, Kp** — phase current regulator for FOC mode. \\ **FW Ki, Kp** — field weakening coefficients. \\ **DCv Ki, Kp** — voltage regulator on the DC bus. \\ **DCi Ki, Kp** — current regulator on the DC bus. \\ **DCw Ki, Kp** — power calculator. \\ **Speed Ki, Kp, Kd** — speed regulator for throttle control modes **Speed** |
- | Select of control options: \\ | + | ~~CL~~ |
- | **Auto** — all sources will control the Сontroller. Built-in and external, connected via CAN bus (for example, On-board computer or ulight). \\ | + | |
- | **Embedd** — only what is connected directly to the Сontroller. \\ | + | |
- | **Remote** — control only via CAN bus (via On-board computer or Microlight). \\ | + | |
- | **Disabled** — disables any control of the Controller. | + | |
- | ~~CL~~ | + | |
- | ==== Throttle control mode setup ==== | + | ===== Status flags ===== |
- | The menu item **Controller** > **Control** > **Throttle mode** you can set up throttle lever mode. | + | The **Controller** |
- | {{: | + | {{: |
- | Three throttle modes options are available:\\ | + | **Reset? |
- | **Speed** — a similar mode is used in Infineon controllers | + | **Max acceleration** — maximum acceleration, |
- | **Torque** — in this mode, the throttle | + | **Min deceleration** |
- | **Speed+torque** — combined mode (as Kelly), similar to the operation | + | |
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | **12V protection** | ||
+ | **Control fail** — the controller was not able to smoothly turn off the electric motor in time when the brake contacts were closed. Values **On** | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | **PAS protection** | ||
+ | | ||
+ | | ||
+ | **ADC sample error** — software error of the analog-to-digital converter | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | **CAN state** | ||
+ | **CAN RX** — the number of messages | ||
+ | **CAN TX** — the number of messages in the CAN bus to transmission. \\ | ||
+ | **CPU Load** | ||
- | In the case of selecting the **Speed+torque** mode, pressing throttle to 50%, when achieved 50% speed, the current consumption will be reduced to hold speed. The acceleration current will also be proportionally lower. \\ | + | ===== Debug information ===== |
- | ==== Throttle and brake voltage range setup ==== | + | |
- | The menu items in the **Controller** > **Control** section allow you to set the voltage ranges | + | The menu section |
- | {{: | + | {{: |
- | Currently, voltage settings for all throttles and brakes are common. \\ | + | **Temp. controller** |
- | **# Throttle** — shows the voltage | + | |
- | **Throttle min** and **Throttle max** — range of the throttle grip, in millivolts | + | |
- | **# Brake** — shows the voltage of the brake connected to the controller, in volts (V). \\ | + | Next in the menu are the sections |
- | **Brake min** and **Brake max** — range of the analog brake lever, in millivolts (mV). Select of values from **0 mV** to **15 000 mV**, in increments of **10 mV**. \\ | + | |
- | **Brake button power** — braking force when pressing the brake button relative to the phase braking level, in percent (%). This setting allows you to adjust the level of braking force with the brake levers with integrated brake buttons. \\ | + | ==== Debug FOC ==== |
- | **Invert brake** — inverts the voltage value from the built-in brake lever. Select **On** to enable. It is useful to enable when the voltage brake lever with reverse voltage is connected to the On-board computer and you want to use the value **Auto** in the menu item **Controller** > **Control** > **Control source**. The digital brake grip (i.e. button) connects to the On-board computer, see section **[[en: | + | |
- | **Active braking** — enables brake to use the battery for stopping. Select of values **On** and **Off**. \\ | + | |
- | **Brake at overheat** — enables full torque braking when motor overheated. Select of values **On** and **Off**. \\ | + | |
- | **Reverse on brake** — after stopping, pressing the brake lever again activates reverse. Select of values **On** and **Off**. | + | |
- | ==== Setup 100% speed value ==== | + | |
- | The menu items in the **Controller** > **Control** section allow you to adjust the 100% speed level. The maximum speed in the field weakening mode is 150%. | + | In the menu section |
- | {{: | + | {{: |
- | **Speed ref. filter** — filter mode selection. Select of values | + | **U Q** — Q-axis voltage, in volts (**V**). \\ **U D** — D-axis voltage, in volts (**V**). \\ **I Q** — Q-axis current, in amperes (**А**). \\ **I D** — D-axis current, in amperes (**А**). \\ **Ireqest Q** — Q-axis |
- | **Filter factor** — sets the filtration factor. Select of values from **0** to **30000**, in increments of **100**. \\ | + | ~~CL~~ |
- | **Speed mode** allows you to select the level of 100% speed and what it depends on: \\ | + | ==== Remote inputs ==== |
- | * **OFF** — completely disables speed control PID. \\ | + | |
- | * **Middle U bat** — the average value between the minimum and maximum voltage of the battery settings used as speed reference, depending on motor kV. \\ | + | |
- | * **U supply** — supply voltage used as speed reference, depending on motor kV. \\ | + | |
- | * **Ref. speed** — speed in km/h, is set by parameter **Reference speed**. The speed value is taken from the motor or from an external speed sensor connected to the controller. \\ | + | |
- | * **Ref. ERPM** — speed in motor electric RPM, is set by parameter **Reference speed**. \\ | + | |
- | **Minimum speed** — in electrical revolutions per minute (ERPM). Select of values from **0 ERPM** to **100000 ERPM**, in increments | + | In the menu section |
- | **Speed lim. at 0% throttle** — enables limiting the speed when the throttle | + | {{: |
- | ===== Motor setup ===== | + | ~~CL~~ |
- | The **Controller** > **Motor Setup** menu contains all settings related to electric motor operation parameters. | + | ===== Logger ===== |
- | ==== Motor temperature sensor ==== | + | In the **Controller ** > **Logger** |
- | In the menu section **Controller** > **Motor setup** > **Motor t°-sensor** you can select a temperature range in which a smooth power limit will occur (**Delta °t** parameter) and specify the maximum temperature (**°t max**). | + | {{: |
- | {{: | + | **Start logging** |
- | **°t max** — maximum electric motor temperature, in degrees Celsius (°C). Select of values from **50°C** to **200°C**, in increments of **1°C**. \\ | + | **Stop logging** — stop recording, select |
- | **Delta °t** | + | |
- | In the menu item **Sensor type** you can select the following types of temperature sensors that support the controller — **KTY81(82)**, | + | ~~CL~~ |
- | It is recommended to install a temperature sensor so close as possible on the stator windings, while not in contact with the stator iron. If you don't know what kind of sensor is in the motor, you can check all types of sensors and select the one that displays data the most closely to room temperature. The current measured temperature is displayed at **# Value °t #**. \\ | + | |
- | The **# °t R (+-10%)#** menu item displays | + | |
+ | * **At start** | ||
+ | **Log time** | ||
- | ==== Clutch ==== | + | * **Time step** |
+ | * **Sys time** | ||
+ | **Log rate** | ||
- | In the menu section | + | **Mode** — recording |
- | {{: | + | * **Buffered** |
+ | * **Max rate** | ||
+ | **Data averaging** | ||
+ | |||
+ | * **None** | ||
+ | * **Fast** | ||
+ | * **Slow** | ||
+ | **Add header to log** — adding the name of the controller when writing the log, so that you can understand which controller the log belongs to in multi-motors configurations. You can set the name of the controller in the menu **Controller** | ||
+ | |||
+ | Next, in the **# Data to log** menu sections, you can select the set of parameters you want to record. Select **On** | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ===== Statistics ===== | ||
- | The parameter | + | In the menu section |
- | **Accelerate** — smoothly accelerates | + | |
- | **Accelerate and hold** — in addition to the previous one, it applies weak torque to the motor after the throttle is released, this mode allows you to switch speeds at mid-drive systems without using the pedals. \\ | + | |
- | **# Phase amps** \\ | + | {{: |
- | **Start time** — maximum time for soft start, in seconds (s). Select values from **1s** to **20s**, in increments of **1s**. \\ | + | |
- | **Start current** — phase motor current at which the load will be detected and the soft start is disabled, in amperes (А). Select values from **0.2А** to **50.0А**, in increments of **0.2А**. This value must be higher than the phase current for specified acceleration of the motor without load. \\ | + | |
- | **Detection time** — the time during which the load must be present, after which the soft start will be switched off, in milliseconds (ms). Select values from **10 ms** to **1000 ms**, in increments of **10 ms**. \\ | + | |
- | **Acceleration** — value in volts/ | + | |
- | **Hold (20%)** and **Hold (80%)** — two parameters regulating the phase current supplied to the motor in the mode **Accelerate and hold**, in amperes (А). **20%** — current at low speeds, **80%** — current at about maximum speed. It is possible to determine the approximate values by the no-load current of the motor. Select values from **0.2А** to **50.0А**, in increments of **0.2А**. \\ | + | |
- | **Hold enable time** — time through which after the throttle has been pressed, torque hold will become available, in seconds (s). Select values from **1s** to **120s**, in increments of **4s**. \\ | + | |
- | **Hold time** — the time during | + | **Wh used total** — total energy consumption (used plus regen), in Watt-hours (**Wh**). \\ **Wh used** |
+ | |||
+ | The values | ||
+ | |||
+ | ===== Device information ===== | ||
+ | |||
+ | In the menu section **Controller** | ||
+ | |||
+ | {{: | ||
+ | |||
+ | **Nucular Controller** | ||
- | <WRAP center round tip 60%>\\ Optimal settings for MAC motor: **Accelerate**, | ||
==== Hall sensors setup ==== | ==== Hall sensors setup ==== | ||
- | Under the menu section **Controller** > **Motor | + | Further in the menu section **Controller** |
- | === Manual setup the Hall sensors angles === | + | {{: |
- | In general, it is not recommended to change these settings manually!\\ | + | **Hall filter** — enable or disable the filter in the direction of rotation, select the **Direction** |
- | In the menu section | + | |
- | {{: | + | **State filter** |
- | **Offset for square** — additional shift for square wave mode, in degrees (**°**). Select of values from **-30°** to **30°**, in increments of **1°**. \\ | + | **Direction filter** — select |
- | **Offset total fwd** — shift all Halls sensors by the specified value for the direct | + | |
- | **Offset total bkwd** — shift all Halls sensors by the specified value for the reverse rotation of the motor., in degrees | + | |
- | To shift all the halls, you must press the right button of the On-board computer, enter the shift angle, press the right button again. The value will be reset and the angle of all halls will change to the specified value. You can change | + | The next menu sections shows the Hall indices |
- | **Reset angles** — reset of all Hall sensors angles. Select of values **On** and **Off**. \\ | + | ~~CL~~ |
- | **Integration threshold** — analogue of Hall angles for sensorless engine control mode, in volts (**V**). \\ | + | |
- | **Hall adjust Ki** — the meaning of the coefficient is to find the midpoint of the position of the Hall sensors when adjusting them. Values from **0.02** to **5.00**, in increments of **0.02**. If the value of the coefficient is too small, then the tuning process will end before the midpoint is determined. If the value of the coefficient is too large, then the setting will not be completed and will stop by timeout, because the midpoint will not be found due to the angles changing too often. | + | |
- | === Hall table === | + | ==== Manual setup the Hall sensors angles ==== |
- | The **Controller** > **Motor | + | In general, it is not recommended to change these settings manually! \\ In the menu section |
- | {{: | + | {{: |
- | ~~CL~~ \\ | + | |
- | === Advanced Hall sensor settings === | + | **Offset for square** |
- | Further | + | To shift all the halls, you must press the right button of the On-board computer, enter the shift angle, press the right button again. The value will be reset and the angle of all halls will change to the specified value. You can change the angle of the hall shift in the opposite direction by setting |
- | {{: | + | **Reset angles** |
- | **Sensor type** — currently, by default, only one type of **Hall** sensor is available. Additional types of supported sensors will be added in future updates. | ||
- | **Sensor mode** — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ | + | ==== Encoder setup ==== |
- | **Sensorless** — motor control using BEMF integration, | + | |
- | **Combined** — start the motor on Hall sensors, then switch to sensorless mode, the threshold is determined by the parameter radians per second (**rad/s**) in the **From hall to s-less** menu item. Select of values from **0.00 rad/s** to **2.00 rad/s** in increments of **0.05 rad/s**. To convert values keep in mind that 1 rad/s to RPM = 9.5493 RPM. \\ | + | |
- | **Sensors** — electric motor control only by signals from Hall sensors. \\ | + | |
- | **Freq** — frequency control. Do not use this mode for driving! \\ | + | |
- | **Interpolate halls** — smooth change | + | In the menu **Controller** > **Motor Setup** > **Position sensor** > **Encoder settings** there are menu items for configuring the motor encoder. The parameter values in each of the items will appear after passing through the Auto-setup procedure. Controllers with encoder capable have orange phase wires and an encoder speed of 580kHZ under **Controller** > **Device Information**. The wire for connecting the electric motor with the encoder is ordered separately and is installed instead of the wire with connector for the Hall sensors. \\ |
- | **Interpolation start** — the motor is always started from a discrete angle, if digital halls are used. After the specified speed, the angle starts | + | Wiring and connectors Compatibility: |
+ | **Halls** > **Encoder** — if your controller has a connector for Hall sensors, then you can make an adapter for the encoder yourself. But, in this case, you will not be able to move when you turn it on, you will need to push the electric bike with your feet to start. \\ | ||
+ | **Encoder** > **Halls** — if your controller has an encoder connector, then you can make an adapter for Hall sensors yourself. Everything will work. \\ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | **Steps** — number of encoder steps, selectable in increments of **1**.\\ | ||
+ | **# Invert counter** — select of values **Off** and **On**.\\ | ||
+ | **# Invert PWM** — select of values **Off** and **On**.\\ | ||
+ | **# Index Z** — the value of the additional output signal of the encoder (zero pointer), the choice | ||
+ | **# Shift Z FW** — signal shift, select of values from **-60°** to **+60°** in increments of **1°**.\\ | ||
+ | **# Shift Z BW** — signal shift, select of values from **-60°** to **+60°** in increments of **1°**.\\ | ||
+ | |||
+ | == Debug information == | ||
+ | **Index** — encoder index signal value. \\ | ||
+ | **Z-Index** — the value of the zero pointer.\\ | ||
+ | **PWM Period** — PWM signal period, in microseconds (**µs**).\\ | ||
+ | **PWM Width** — PWM signal pulse width, in microseconds (**µs**).\\ | ||
+ | **Rad by index** — position of the electric motor by index, in radians (**rad**).\\ | ||
+ | **Rad by PWM** — position of the electric motor by PWM, in radians (**rad**).\\ | ||
- | **Frequency control** — a separate mode that can be used to power equipment through a transformer or to dry the varnish on the motor windings. Select of values from **10 HZ** to **200 HZ**, in increments of **1 HZ**. \\ | ||
- | **Hall filter** — enable or disable the filter in the direction of rotation, select the **Direction** and **OFF** values.\\ | ||
- | **State filter** — select the delay time, in seconds (sec). Selection of values from **0.000s** to **1.000s**, in increments of **0.002s**. This delay is used if the wrong value of the Hall sensors is received. All indicators that are less than the set value will be filtered out. \\ | ||
- | **Direction filter** — select the delay time for changing the direction of rotation of the electric motor (forward/ | ||
==== Motor parameters ==== | ==== Motor parameters ==== | ||
- | Items in the **Controller** > **Motor setup** menu section allow you to configure the parameters of the electric motor. | + | Items in the **Controller** |
- | {{: | + | {{: |
- | **Pole pair** — the number of pole pairs of the stator winding of the electric motor determines the speed at which the motor shaft will rotate. This parameter is used to calculate RPM and speed. For a more accurate autodetection of the Hall sensors angles, you must specify the correct value for the number of pole pairs for your motor. For the most popular motors, you can see this value in the table **[[en: | + | **Pole pair** |
- | **Spin direction** — this setting allows you to change the direction of rotation of the electric motor. Select of values **Forward** and **Invert**. Or you can swap two motor phases to change the direction of rotation.\\ | + | **Spin direction** |
- | **Integration thr.** — the analog of Hall sensors angles for sensorless motor control mode, in volts (**V**). | + | **Integration thr.** |
- | **Control mode** — this parameter is loaded at start-up and can be saved. At the moment, the Controller has the following motor control modes: \\ | + | **Control mode** |
- | **Off** — control mode is disabled.\\ | + | |
- | **Square** — outdated control method used only for motor detection. \\ | + | |
- | **FOC** — field-oriented control of the motor. \\ | + | |
- | **DC-DC** — charging mode when you use the controller in motor charging mode. \\ | + | |
- | The control mode selected in this menu is the priority setting for the controller. If the Hall sensor mode is selected in the **Controller** > **Motor setup** > **Position sensor** menu, which does not correspond to the set operating mode of the electric motor, then this Hall sensor mode will be automatically replaced with a more suitable one. | + | The control mode selected in this menu is the priority setting for the controller. If the Hall sensor mode is selected in the **Controller** |
- | **Max motor U** — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter is not needed. Select of values from **0V** to **100V**, in increments of **1V**. | + | **Max motor U** — limits voltage supplied to the motor, in volts (**V**). In most cases, this parameter is not needed. Select of values from **0V** |
- | **kV** — motor parameter, electric revolutions per volt (**eRPM/ | + | **kV** |
- | Next are the menu items for configuring the MTPA, this function allows you to introduce a negative id current to increase the torque on the IPM motors. | + | Next are the menu items for configuring the MTPA, this function allows you to introduce a negative id current to increase the torque on the IPM motors. |
- | **Phase resistance** — the result of measuring the phase resistance of the electric motor during auto-setup (menu item **Motor LR**), in Ohms (Ohm). | + | **Phase resistance** |
- | **Inductance d** — the result of measuring the inductance of the electric motor along the d axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The d-axis (" | + | **Inductance d** — the result of measuring the inductance of the electric motor along the d axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The d-axis (" |
- | **Inductance q** — the result of measuring the inductance of the electric motor along the q axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The q-axis (" | + | **Inductance q** — the result of measuring the inductance of the electric motor along the q axis during auto-setup (menu item **Motor LR**), in microHenry (µH). The q-axis (" |
- | **Flux linkage** — is the total magnetic flux permeating the electrical circuit, in Weber (Wb). \\ | + | **Flux linkage** |
- | **# Square wave settings:** \\ | + | **MTPA (IPM Motor)** — enable (**On**) the MTPA function for IPM motor, for all other motors this function must be disabled |
- | **Square offset** — additional shift for square wave mode, in degrees | + | |
- | **Boost square current** — in the sensorless or square mode, applies 100% PWM at the beginning of each winding switch. Starting from specified speed and minimum requested current. Select of values | + | |
- | **Boost current** — setting refers to the control mode **Square**, the minimum current from which the rapid current pumping in the windings is turned on, in amperes (**А**). Select of values from **0A** to **100A**, in increments of **1A**. \\ | + | |
- | **Boost speed** — setting refers to the control mode **Square**, the minimum speed after which the rapid pumping of current in the windings is turned on, in radians per second | + | |
+ | **# Square wave settings:** \\ **Square offset** | ||
===== Battery ===== | ===== Battery ===== | ||
- | In the **Controller** > **Battery** menu section you can set up the parameters of the battery connected to the Controller. The Nucular controllers support supply voltages from **20V** to **90V**, this is **21S** for Lithium-ion (Li-ion) batteries and **25S** for Lithium-iron-phosphate (LiFePO4) batteries. To configure the battery, you must specify the range of supply voltage and current. To correctly display the battery capacity on the On-board computer screen and correctly calculate the remaining charge, you must specify the battery capacity in [[en: | + | In the **Controller** > **Battery** menu section you can set up the parameters of the battery connected to the Controller. The Nucular controllers support supply voltages from **20V** to **90V**, this is **21S** for Lithium-ion (Li-ion) batteries and **25S** for Lithium-iron-phosphate (LiFePO4) batteries. To configure the battery, you must specify the range of supply voltage and current. To correctly display the battery capacity on the On-board computer screen and correctly calculate the remaining charge, you must specify the battery capacity in [[:en: |
- | {{: | + | {{: |
- | **Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, | + | **Full charge** — delta voltage relative to the maximum, at which when the controller is turned on, will reset the watt-hour consumption, |
- | **Supply max** and **Supply min** — battery voltage range, in volts (**V**). Select values from **20.00V** to **95.00V**, in increments of **00.1V**. Also, these settings are used for the **Converter** mode. \\ | + | **Supply max** and **Supply min** — battery voltage range, in volts (**V**). Select values from **20.00V** to **95.00V**, in increments of **0.1V**. Also, these settings are used for the **Converter** mode. |
- | For lithium-ion (Li-ion) batteries, the minimum can be considered **2.8V*S**, the maximum **4.2V*S**. \\ | + | For lithium-ion (Li-ion) batteries, the minimum can be considered **2.8V*S**, the maximum **4.2V*S**.\\ |
For lithium-iron-phosphate (LiFePO4)-minimum **2.7V*S**, maximum **3.6V*S**. \\ | For lithium-iron-phosphate (LiFePO4)-minimum **2.7V*S**, maximum **3.6V*S**. \\ | ||
- | <WRAP center round important 60%> | + | <WRAP center round important 60%> We guarantee stable operation of the Controller at voltages up to **90V** inclusive. Using a battery over 90V may damage the Controller and void the warranty. </ |
- | We guarantee stable operation of the Controller at voltages up to **90V** inclusive. Using a battery over 90V may damage the Controller and void the warranty. | + | |
- | </ | + | |
- | **Charge max** — maximum battery charging current, during regeneration or in **Converter** mode, in amperes (**А**). Select values from **1.0A** to **400.0А**, | + | **Charge max** — maximum battery charging current, during regeneration or in **Converter** mode, in amperes (**А**). Select values from **1.0A** to **400.0А**, |
- | **Discharge max** — maximum continuous discharge current of the battery, but in boost mode, it can be more, check (Throttle control mode setup.), in amperes (**А**). Select values from **1.0A** to **400.0А**, | + | **Discharge max** — maximum continuous discharge current of the battery, but in boost mode, it can be more, check (Throttle control mode setup.), in amperes (**А**). Select values from **1.0A** to **400.0А**, |
- | **Power max** — maximum continuous discharge power, in watts (**W**). Set 0W to deactivate power limit. Select values from **0W** to **30000 W**, in increments of **100W**. | + | **Power max** — maximum continuous discharge power, in watts (**W**). Set 0W to deactivate power limit. Select values from **0W** to **30000 W**, in increments of **100W**. |
**# DC voltage** — current supply voltage of the Controller, in volts (**V**). | **# DC voltage** — current supply voltage of the Controller, in volts (**V**). | ||
+ | |||
===== Converter ===== | ===== Converter ===== | ||
- | In the menu section **Controller** > **Converter**, | + | In the menu section **Controller** |
- | {{: | + | {{: |
- | **Enable** — turn on the converter mode and start charging. Select of values **On** and **Off**. | + | **Enable** |
- | **Auto-enable** — allows the automatic start of charging when the charging PSU is connected to the controller. Select of values **On** and **Off**. | + | **Auto-enable** |
- | **Detection threshold** — minimum voltage on phases when charger mode activates, also disables motor control, in volts per phase (**Vph**). Select of values from **10Vph** to **80Vph**, in increments of **1Vph**. | + | **Detection threshold** |
- | **Battery max I** — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select of values from **0.0А** to **100.0A**, in increments of **0.5А**. | + | **Battery max I** — maximum battery charge current, if no value is specified then battery settings are used, in amperes (**А**). Select of values from **0.0А** |
- | **Battery min I** — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values from **0.5А** to **10.0A**, in increments of **0.5А**. | + | **Battery min I** — minimum charge current when current is decreased by voltage, in amperes (**А**). Select of values from **0.5А** |
- | **Undercharge** — voltage relative to maximum battery voltage setup, in volts (**V**). Let's decrease the full charge voltage. Select of values from **0.00V** to **10.0V**, in increments of **0.1V**. | + | **Undercharge** |
- | **Current drop delta** — decreases charging current down to **Battery min I** as the battery reaches maximum voltage on specified voltage range, in volts (**dV**). Select of values from **0.0dV** to **20.0 dV** in increments of **0.5 dV**. | + | **Current drop delta** |
- | **Supply max I** — maximum power supply current, in amperes (**А**). Select of values from **2.0 A** to **150.0 A**, in increments of **0.5 A**. | + | **Supply max I** — maximum power supply current, in amperes (**А**). Select of values from **2.0 A** to **150.0 A**, in increments of **0.5 A**. |
- | **Supply drop U** — allowable voltage drop on wires or power supply, in volts (**V**). Select of values from **0.50 V** to **10.00 V**, in increments of **0.25 V**. \\ | + | **Supply drop U** — allowable voltage drop on wires or power supply, in volts (**V**). Select of values from **0.50 V** to **10.00 V**, in increments of **0.25 V**. |
- | **Max motor t°** — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select of values from **50°C** to **120°C**, in increments of **5°C**. | + | **Max motor t°** — setting the limitation of the heating temperature of the motor during charging, in degrees Celsius (**°C**). Select of values from **50°C** |
- | Below in the menu section, through the **#** sign, the real-time values of voltages and currents are shown: \\ | + | Below in the menu section, through the **#** sign, the real-time values of voltages and currents are shown: \\ **# Battery I** \\ **# Battery U** \\ **# Supply I** \\ **# Supply U** |
- | **# Battery I** \\ | + | |
- | **# Battery U** \\ | + | |
- | **# Supply I** \\ | + | |
- | **# Supply U** \\ | + | |
After plugging in the power supply, the On-board Computer will display the battery charging process. | After plugging in the power supply, the On-board Computer will display the battery charging process. | ||
- | {{{: | + | {{: |
- | **-22.1A** — information line parameter, depending on the On-Board Computer settings. \\ | + | |
- | **0:0:58** — time elapsed since charging started, hours, minutes, seconds. \\ | + | |
- | **I24.9** — charging current, in Amperes (**A**). \\ | + | |
- | **U53.7** — charging voltage, in Volts (**V**). | + | |
- | **The indication in the middle** is the temperature of the motor and the controller, respectively, | + | **The indication in the middle** |
- | **Indication to the left:** \\ | + | **Indication to the left:** \\ **59.0V** |
- | **59.0V** — information line parameter, depending on the On-Board Computer settings. \\ | + | |
- | **15Wh** — the battery capacity in Watt hours (**Wh**). \\ | + | |
- | **100%** — the battery level, in percent (**%**). \\ | + | |
- | **I24.9** — the battery current, in Amperes (**A**). \\ | + | |
- | **U53.7** — the battery voltage, in Volts (**V**). | + | |
- | + | ~~CL~~ | |
- | ~~CL~~ | + | |
===== I/O port configuration ===== | ===== I/O port configuration ===== | ||
- | In the **Controller** > **I/O configuration** menu section, you can configure the ports functions. The controller has eight digital ports that can be configured for different functions — **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M**. See section **[[en: | + | In the **Controller** |
+ | |||
+ | Sixteen CAN ports are additionally available **CAN port 1** - **CAN port 16**, the signal source for which can be configured on the On-board computer or uLight. These are software values, there are fewer physical inputs on the boards, at the moment there are eight CAN ports **IO1** | ||
+ | |||
+ | {{: | ||
- | Sixteen CAN ports are additionally available | + | In the section |
- | {{:en:controller:k23_en.png?nolink |}} | + | If the controls are connected to the On-board computer, then it is necessary to check the activation when contact shorted to GND in the **On-board computer** > **Information** [[en:display:start# |
- | In the section **Controller** > **I/O configuration** > **Port state**, you can check input activation when contact shorted to GND. When a signal is applied, the value will change from **0** to **1**. Below in the menu items **# Throttle** and **# Brake** you can see the voltage on the throttle and brake levers, respectively. | ||
~~CL~~ \\ | ~~CL~~ \\ | ||
- | In the item ** Controller **> **I/O configuration** > **Speeds mode** you can select the method for switching additional modes **S1**, **S2**, **S3** for inputs in the Controller or CAN inputs - **Switch** or **Buttons**. \\ | ||
- | {{: | + | In the item ** Controller **> **I/O configuration** |
- | Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M** and CAN ports **CAN port 1** - **CAN port 16**: \\ | + | {{:en: |
- | **OFF** — disable port. \\ | + | |
- | **RV** — reverse. \\ | + | |
- | **CRe** — enable cruise. \\ | + | |
- | **CR+** — increment cruise speed (when cruise is active). \\ | + | |
- | **CR-** — decrement cruise speed (when cruise is active). \\ | + | |
- | **CRr** — restore last saved cruise speed with button, activated only above min cruise speed. \\ | + | |
- | **BK** — brake button. \\ | + | |
- | **DM** — disable motor (disable throttle, brake and PAS). \\ | + | |
- | **DTH** — disable throttle. \\ | + | |
- | **DPAS** — disable PAS. \\ | + | |
- | **SWSNS** — input for Gearsensor to reduce motor torque (WIP). In development. \\ | + | |
- | **N** — activates the neutral mode forcibly, resets speed mode counter if used. If neutral is activated by default, you need to change speed mode again to exit neutral. \\ | + | |
- | **nBK** — inverted brake button input, activates the brake when the contact is opened. \\ | + | |
- | **S1** — speed 1. \\ | + | |
- | **S2** — speed 2. \\ | + | |
- | **S3** — speed 3. \\ | + | |
- | **S1of3** — speed 1 for 3-position switch. \\ | + | |
- | **S3of3** — speed 3 for 3-position switch. \\ | + | |
- | **Scyc** — cycle speed mode, sequential switching with one button. \\ | + | |
- | **S++** — increment speed, switching the speed from low to high with one button. \\ | + | |
- | **S--** — decrement speedи, switching the speed from high to low with one button. \\ | + | |
- | **SPSNS** — input for external speed sensor. \\ | + | |
- | **Spec.** — special port function (like PWM or PAS). \\ | + | |
- | Further in the menu, there are items for configuring the PWM outputs. | + | Available functions for the Controller ports **S1**, **S3**, **RV**, **CR**, **P1**, **P2**, **P**, **M** and CAN ports **CAN port 1** - **CAN port 16**: \\ **OFF** |
- | ~~CL~~ | + | **Spec.** |
- | ==== PWM output setup ==== | + | **CL1**-**CL5** — instant configuration import by pressing the CAN button (up to five different configurations). For correct import, the function number must match the number in the name of your configuration file. For example, a **CL3** function would correspond to a file called **ncconf3.cfg**. |
+ | |||
+ | Further in the menu, there are items for configuring the PWM outputs. | ||
+ | |||
+ | ~~CL~~ | ||
+ | |||
+ | ==== PWM output setup ==== | ||
- | To activate the **PWM P1** or **PWM P2** output, the **Controller** > **Port Setup** menu should be set to **Spec.** mode and **PAS** disabled. | + | To activate the **PWM P1** or **PWM P2** output, the **Controller** |
- | **PWM freq** — selection of frequency of additional PWM output on ports **P1/P2**. Select of values PWM frequency — **100Hz**, **500Hz**, **1kHz**, **5kHz**, **10kHz**, **24kHz (FAN)**. For a conventional light bulb, large values are not needed. Select the frequency **100Hz**, this will be enough to avoid flickering. The high frequency marked ** FAN ** is used to control the fan, this is their standard frequency. | + | **PWM freq** |
- | **PWM P1** and **PWM Р2** — selection of operating modes: | + | **PWM P1** and **PWM Р2** — selection of operating modes: |
- | * **Disabled** — mode not selected. \\ | + | |
- | * **Stop-light** — activated when the brake is pressed. \\ | + | |
- | * **Headlight** — activated when the controller is enabled. \\ | + | |
- | * **t°C motor** — activated beyond the two deltas of the motor temperature, | + | |
- | * **t°C controller** — activated from 40°С, maximum value at 80°С temperature of the Controller. \\ | + | |
- | **PWM Pn Min** / **Max** — indicates the output range of the PWM (duty), select of values from **0%** to **100%**, in increments **1%**. \\ | + | * **Disabled** |
- | **PWM Pn t° Min** / **t° Max** — selection of motor or controller temperature, | + | * **Stop-light** |
+ | * **Headlight** | ||
+ | * **t°C motor** | ||
+ | * **t°C controller** | ||
+ | **PWM Pn Min** / **Max** | ||
===== Extra parameters ===== | ===== Extra parameters ===== | ||
- | In the menu section **Controller** > **Extra parameters** you can set up various additional settings of the Controller. | + | In the menu section **Controller** |
==== The power button and auto shutdown ==== | ==== The power button and auto shutdown ==== | ||
- | The controller power button is located on the back of the On-Board Computer. In the **Controller** > **Extra parameters** > **Disable button** menu item, you can select the way to turn on/off the Controller, which turns on when it is powers-up or the button contacts are closed. In the off mode, the controller consumes about 100 μA, so if you reconnect the power supply without discharging the capacitors, the controller may not start. | + | The controller power button is located on the back of the On-Board Computer. In the **Controller** |
- | {{: | + | {{: |
- | Selecting modes for **Disable button**: \\ | + | Selecting modes for **Disable button**: \\ **None** |
- | **None** — the controller turns on when it is power-up up or when the power button is closed, does not turn off. \\ | + | |
- | **Switch** — the controller turns on when the power button is closed (when EN shorted to GND), turns off when it opens. \\ | + | |
- | **Button** — the controller turns on the button on the On-Board Computer, press it for 2 seconds, and release, to disable it, press and hold the button again. \\ | + | |
- | **CAN** — the controller turns on when it is powers-up or the button contacts shorts, disables only when another device on CAN bus will send a request to disable. This function is used when there are several controllers on a system, where one of them is set to button or switch mode, and the other in CAN mode. \\ | + | |
- | **Auto shutdown** — activation of the controller shutdown function after a while if the motor does not spin. Select of values **On** and **Offл**. The shutdown time is set in item **Sleep time**. | + | **Auto shutdown** |
- | **Sleep time** — selection of the controller shutdown time when the **Auto shutdown** function is activated, in seconds, (**s**). Select of values from **30s** to **1500s**, in increments of **5s**. | + | **Sleep time** |
- | **Lock at turn-on** — the function locks controller inputs when enabled until the password is entered on the On-Board Computer, if there is no On-Board Computer, enabling this setting will permanently lock the controller. | + | **Lock at turn-on** |
==== Speedometer setup ==== | ==== Speedometer setup ==== | ||
- | The next block of settings in the menu section **Controller** > **Extra parameters** refers to the speed calculation setting. If you use an external speed sensor connected to the On-board computer, you need to configure it in menu **[[en: | + | The next block of settings in the menu section **Controller** |
- | {{: | + | {{: |
- | **Speed calculation** — enabling speed calculation in the Controller. Useful for multi-motor configurations, | + | **Speed calculation** |
- | **Circumference** — wheel circumference, | + | **Circumference** |
- | **Motor sprocket** — this setting specifies the number of sprocket teeth on the motor (notional), which allows you to set the gear ratio from motor shaft to the wheel. Also, this setting can be used as a reduction ratio for gear motors. | + | **Motor sprocket** |
- | **Wheel sprocket** — the number of teeth of the wheel sprocket, similar to the setting **Motor sprocket**. | + | **Wheel sprocket** |
- | If you have a wheel motor, then in the section **Controller** > **Motor setup** you need to specify the number of **Pole pair** (divide the number of magnets by two). For gear motors or mid-drives, it is recommended to install an external speed sensor that connects to the Onboard computer or to any of the controller ports. | + | If you have a wheel motor, then in the section **Controller** |
==== Master-controller ==== | ==== Master-controller ==== | ||
- | {{: | + | {{: |
- | In the menu section **Controller** > **Extra parameters** > **Master-controller** you can enable the function of controlling other controllers from the current one. This setting is suitable for multi-motor configurations where control (throttle, brake and etc.) is connected into one of the controllers directly. | + | |
- | ~~CL~~ | + | ~~CL~~ |
==== Other settings ==== | ==== Other settings ==== | ||
- | {{: | + | {{: |
- | **Limit t° CPU** — limiting the temperature of the processor, in degrees Celsius (**°C**). When the specified threshold is reached, the phase current will be limited. Select of values from **60°C** to **105°C**, in increments of **5°C**. | + | |
- | **Device ID** — setting the Controller number in the CAN network. This number is displayed in the menu section **Settings** > **Devices** in front of each device that is connected to the network using the [[en: | + | **Device ID** — setting the Controller number in the CAN network. This number is displayed in the menu section **Settings** |
- | **Prefix 1** and **Prefix 2** — controller name setting for multi-motor configurations. Using the prefixes together or separately, you can specify where the electric motor that the Controller controls is located. The selectable values for each prefix are **None**, **Front**, **Rear**, **Left**, **Right**. To save the setting, go to the **Controller** > **Save settings** menu item and select **On**, then restart the controller. The prefix will now appear in front of the controller name in the **Devices** menu. \\ | + | **Prefix 1** and **Prefix 2** — controller name setting for multi-motor configurations. Using the prefixes together or separately, you can specify where the electric motor that the Controller controls is located. The selectable values for each prefix are **None**, **Front**, **Rear**, **Left**, **Right**. To save the setting, go to the **Controller** |
- | For example, you have a 2WD scooter and two 12F controllers, | + | For example, you have a 2WD scooter and two 12F controllers, |
- | If you are using a 3WD drive or more, then both prefixes must be used for the controller name. For example, if the controller is driving a rear right motor, the setting will look like this: **Prefix 1** — **Rear**, **Prefix 2** — **Right**. | + | If you are using a 3WD drive or more, then both prefixes must be used for the controller name. For example, if the controller is driving a rear right motor, the setting will look like this: **Prefix 1** — **Rear**, **Prefix 2** — **Right**. |
===== PID regulators ===== | ===== PID regulators ===== | ||
- | In the **Controller** > **PID regulators** menu section, various signals of proportional-integral-derivative (PID) regulators are configured - devices in the control loop with feedback used in automatic control systems to generate a control signal in order to obtain the required accuracy and the quality of the transition process. **Settings for advanced users**. | + | In the **Controller** |
- | {{: | + | {{: |
- | Two or three coefficients are used for the settings of each regulator: \\ | + | |
- | **Ki** — integral coefficient. \\ | + | **Square Ki, Kp** — phase current regulator for a square wave. \\ **FOC Ki, Kp** — phase current regulator for FOC mode. \\ **FW Ki, Kp** — field weakening coefficients. \\ **DCv Ki, Kp** — voltage regulator on the DC bus. \\ **DCi Ki, Kp** — current regulator on the DC bus. \\ **DCw Ki, Kp** — power calculator. \\ **Speed Ki, Kp, Kd** — speed regulator for throttle control modes **Speed** |
- | **Кp** — proportional coefficient. \\ | + | |
- | **Kd** — differentiating coefficient. \\ | + | ~~CL~~ |
- | **Square Ki, Kp** — phase current regulator for a square wave. \\ | ||
- | **FOC Ki, Kp** — phase current regulator for FOC mode. \\ | ||
- | **FW Ki, Kp** — field weakening coefficients. \\ | ||
- | **DCv Ki, Kp** — voltage regulator on the DC bus. \\ | ||
- | **DCi Ki, Kp** — current regulator on the DC bus. \\ | ||
- | **DCw Ki, Kp** — power calculator. \\ | ||
- | **Speed Ki, Kp, Kd** — speed regulator for throttle control modes **Speed** and **Speed+torque**. \\ | ||
- | **PLL Ki, Kp** — speed regulator for motor angle interpolation. \\ | ||
- | **Acceleration Kp, Ki** — deceleration and acceleration regulator. | ||
- | ~~CL~~ \\ | ||
===== Status flags ===== | ===== Status flags ===== | ||
- | The **Controller** > **Status Flags** menu section displays errors that may occur during the operation of the Controller. If an error occurs, the parameter value changes to **On**.\\ | + | The **Controller** |
- | {{: | + | {{: |
- | **Reset?** — reset all statuses. Values **On** and **Off**. \\ | + | **Reset? |
- | **Max acceleration** — maximum acceleration, | + | **Max acceleration** |
- | **Min deceleration** — maximum deceleration, | + | **Min deceleration** |
- | **Overload current** — the last recorded current on the phases, in Amperes. \\ | + | **Overload current** |
- | **Overload** — exceeding the permissible current values. Values **On** and **Off**. \\ | + | **Overload** |
- | **Over-Field weakening** — weakening error. Values **On** and **Off**. \\ | + | **Over-Field weakening** |
- | **Supply overvoltage** — too high supply voltage, the error will appear above 95V, but in general depends on the controller model. Values **On** and **Off**. \\ | + | **Supply overvoltage** |
- | **Supply undervoltage** — too low supply voltage, less than the minimum battery supply threshold. Values **On** and **Off**. \\ | + | **Supply undervoltage** |
- | **12V protection** — breaking down or error on the 12V power line. Values **On** and **Off**. \\ | + | **12V protection** |
- | **Brake error** — brake lever connection error. Values **On** and **Off**. \\ | + | **Control fail** — the controller was not able to smoothly turn off the electric motor in time when the brake contacts were closed. Values **On** and **Off**. |
- | **Throttle error** — throttle lever connection error. Values **On** and **Off**. \\ | + | **12V protection** |
- | **Hall error** — Hall sensor connection error. Values **On** and **Off**. \\ | + | **Brake error** |
- | **Code error** — error executing firmware code. Values **On** and **Off**. Let us know if this error occurs. \\ | + | **Throttle error** |
- | **PAS protection** — PAS error. Values **On** and **Off**. \\ | + | **Hall error** |
- | **Controller overheat** — overheat protection of the controller. Values **On** and **Off**. \\ | + | **Code error** |
- | **Motor overheat** — overheating protection of the electric motor. Values **On** and **Off**. \\ | + | **Thread error** — processor overload. Values **On** and **Off**. The error is not critical, let us know if it occurs. \\ |
- | **Protection fail** — hardware error, malfunction of all protection systems during controller self-test. If this error occurs, the operation of the Controller will be impossible. Values **On** and **Off**. \\ | + | **PAS protection** |
- | **Voltage on phases** — overvoltage on phases. Values **On** and **Off**. \\ | + | **Controller overheat** |
- | **CAN: error** — CAN-bus errors. Values **On** and **Off**. | + | **Motor overheat** |
- | **LEC** — types of errors on the CAN bus. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **Stuff**, **Form**, **Acknowledgment**, | + | **Protection fail** |
- | **Receive w/error** — CAN-bus errors on receiving. \\ | + | **ADC sample error** — software error of the analog-to-digital converter (ADC). Values **On** and **Off**. \\ |
- | **Sent w/error** — CAN-bus errors on transmitting. \\ | + | **VBUS sample |
- | **CAN state** — overloading buffers. If everything is alright you will see the value **Ok**. In case of errors, there will be values - **OVR0**, **OVR1**, **OVR01**. Tell us the code if this error occurs. \\ | + | **Voltage on phases** |
- | **CPU Load** — current load of the central processor, in percentage (**%**). | + | **LEC** |
+ | **Receive w/ | ||
+ | **Sent w/ | ||
+ | **CAN state** | ||
+ | **CAN RX** — the number of messages in the CAN bus to receive. \\ | ||
+ | **CAN TX** — the number of messages in the CAN bus to transmission. \\ | ||
+ | **CPU Load** | ||
===== Debug information ===== | ===== Debug information ===== | ||
- | The menu section **Controller** > **Debug information** shows the main parameters of your Controller, electric motor, and the whole system - temperature, | + | The menu section **Controller** |
- | {{: | + | {{: |
- | **Temp | + | **Temp. controller** — temperature of the Controller, in degrees Celsius (**°C**). \\ |
- | **Temp | + | **Temp. motor** — temperature of the electric motor, in degrees Celsius (**°C**). \\ |
- | **DC current** — DC current, in amperes (**А**). \\ | + | **DC current** |
- | **DC voltage** — DC voltage, in volts (**V**). \\ | + | **DC voltage** |
- | **AC current** — AC current, in amperes (**А**). \\ | + | **AC current** |
- | **AC voltage** — AC voltage, in volts (**V**). \\ | + | **AC voltage** |
- | **Motor U0** — DC voltage on phases, in volts (**V**). \\ | + | **Motor U0** — DC voltage on phases, in volts (**V**). \\ |
- | **System 12V** — voltage on the CAN bus 12V, in volts (**V**). \\ | + | **System 12V** — voltage on the CAN bus 12V, in volts (**V**). \\ |
- | **System 5V** — voltage on the CAN bus 5V, in volts (**V**). \\ | + | **System 5V** — voltage on the CAN bus 5V, in volts (**V**). \\ |
- | **RPM** — motor speed, in RPM (**RPM**). \\ | + | **RPM** |
- | **ERPM** — electric revolutions of the motor per minute (**ERPM**). \\ | + | **Hall input** |
- | **Hall input** — this parameter allows you to check the functionality of the Hall sensors. There are three digits in this item, each shows the signal level, if you rotate the motor slowly by hand, all three digits should change. If none of the digits change, check if the Hall connector is connected or the ground may be broken. If one of the digits does not change - there is no contact or the sensor wire is broken. To check the contacts in the controller, disconnect the Hall connector and measure the voltages on the controller connector. There should be about 4V on the signal lines of the Halls, 5V on the power supply, and about 3V on the temperature sensor line. \\ | + | **Hall index** |
- | **Hall index** — virtual position of the motor, digits from 1 to 6 (normal operation). \\ | + | **Throttle %** — the percentage of how much the throttle is pressed. \\ |
- | **Throttle %** — the percentage of how much the throttle is pressed. \\ | + | **Brake %** — the percentage of how much the brake is pressed. \\ |
- | **Brake %** — the percentage of how much the brake is pressed. \\ | + | **Speed request** |
- | **Speed request** — set point for the speed regulator, in eRPM. \\ | + | **Torque request** |
- | **Torque request** — phase current request, either positive throttle or a negative brake. \\ | + | **Torque limit** |
- | **Torque limit** — current limit for this type of controller, taking into account overheating. \\ | + | **Temp CPU** — CPU temperature, |
- | **Temp CPU** — CPU temperature, | + | |
+ | Next in the menu are the sections **Debug FOC** and **Remote inputs**, which are described below. | ||
- | Next in the menu are the sections **Debug FOC** and **Remote inputs**, which are described below. | ||
- | |||
==== Debug FOC ==== | ==== Debug FOC ==== | ||
- | In the menu section **Controller** > **Debug information** > **Debug FOC** \\ | + | In the menu section **Controller** |
- | {{: | + | {{: |
+ | |||
+ | **U Q** — Q-axis voltage, in volts (**V**). \\ **U D** — D-axis voltage, in volts (**V**). \\ **I Q** — Q-axis current, in amperes (**А**). \\ **I D** — D-axis current, in amperes (**А**). \\ **Ireqest Q** — Q-axis current request, in amperes (**А**). \\ **Ireqest D** — D-axis current request, in amperes (**А**). | ||
+ | |||
+ | ~~CL~~ | ||
- | **U Q** — Q-axis voltage, in volts (**V**). \\ | ||
- | **U D** — D-axis voltage, in volts (**V**). \\ | ||
- | **I Q** — Q-axis current, in amperes (**А**). \\ | ||
- | **I D** — D-axis current, in amperes (**А**). \\ | ||
- | **Ireqest Q** — Q-axis current request, in amperes (**А**). \\ | ||
- | **Ireqest D** — D-axis current request, in amperes (**А**). | ||
- | ~~CL~~ \\ | ||
==== Remote inputs ==== | ==== Remote inputs ==== | ||
- | In the menu section **Controller** > **Debug information** > **Remote inputs** you can view the parameters of the throttle and brake levers connected to other devices connected to the CAN-bus (On-board computer or uLight). \\ | + | In the menu section **Controller** |
+ | |||
+ | {{: | ||
+ | |||
+ | ~~CL~~ | ||
- | {{: | ||
- | **Throttle** — voltage on the throttle lever at a remote source (On-board computer or uLight), in volts (**V**). \\ | ||
- | **Brake** — voltage at the brake lever at a remote source (On-board computer or uLight), in volts (**V**). \\ | ||
- | **Throttle % **— the percentage of how much the throttle pressed at a remote source. \\ | ||
- | **Brake %** — the percentage of how much the brake pressed at a remote source. | ||
- | ~~CL~~ \\ | ||
===== Logger ===== | ===== Logger ===== | ||
- | In the **Controller ** > **Logger** menu section, you can enable and configure the data logging during the operation of the Controller. This functionality is experimental, | + | In the **Controller ** > **Logger** |
- | {{: | + | {{: |
- | **Start logging** — to start recording, select **On** and press the right button of the On-board computer. After that, the **#State** menu item will change to **Waiting** status. The recording will start automatically after pressing the throttle grip. If an error occurs during the recording process, you will see its code in the ** # Error code ** menu item. In case of an error, firstly, check that the SD card has the FAT32 file system, and secondly, that there is free space on the SD card for recording. Additionally, | + | **Start logging** |
- | **Stop logging** — stop recording, select **On** to end recording. | + | **Stop logging** |
- | ~~CL~~ \\ | + | |
- | **Start mode** — selection of recording start mode: | + | |
- | * **Manual** — enable manual recording. | + | |
- | * **At start** — recording starts automatically when the Controller is turned on. | + | |
- | **Log time** — two parameters of time for recording to choose from: | + | ~~CL~~ |
- | * **Time step** — delta of time since the previous record. | + | |
- | * **Sys time** — global time, which is incremented after the start of the controller. | + | |
- | **Log rate** — delay between records | + | |
- | **Mode** — recording mode selection: | + | * **Manual** |
- | * **Buffered** — buffering and recording in segments. | + | * **At start** |
- | * **Max rate** — continuous recording mode. | + | **Log time** |
+ | |||
+ | * **Time step** | ||
+ | * **Sys time** | ||
+ | **Log rate** | ||
+ | |||
+ | **Mode** | ||
+ | |||
+ | * **Buffered** | ||
+ | * **Max rate** | ||
+ | **Data averaging** | ||
- | **Data averaging** — using filters while recording: | ||
* **None** | * **None** | ||
- | * **Fast** — slight averaging (smoothes values). | + | * **Fast** |
- | * **Slow** — large averaging. | + | * **Slow** |
+ | **Add header to log** — adding the name of the controller when writing the log, so that you can understand which controller the log belongs to in multi-motors configurations. You can set the name of the controller in the menu **Controller** | ||
- | Next, in the **# Data to log** menu sections, you can select the set of parameters you want to record. Select **On** to enable parameter recording. | + | Next, in the **# Data to log** menu sections, you can select the set of parameters you want to record. Select **On** |
- | {{: | + | {{: |
**# Data to log**: \\ | **# Data to log**: \\ | ||
- | **Battery Voltage** — battery voltage data logging. \\ | + | **Battery Voltage** |
- | **Battery Current** — battery current data logging. \\ | + | **Battery Current** |
- | **Motor Voltage** — motor voltage data logging. \\ | + | **Motor Voltage** |
- | **Motor Current** — motor current data logging. \\ | + | **Motor Current** |
- | **Wheel speed** — wheel speed data logging. \\ | + | **Wheel speed** |
- | **Motor rad/s** — data logging of the angular speed of the electric motor. \\ | + | **Motor rad/ |
- | **Motor RPM** — data logging of revolutions of an electric motor per minute. \\ | + | **Motor RPM** — data logging of revolutions of an electric motor per minute. \\ |
- | **Tmotor °C** — data logging of the electric motor temperature. \\ | + | **Motor angle** — data logging of the angle of the electric motor. \\ |
- | **Tfet °C** — data logging the temperature of field-effect transistors. \\ | + | **Tmotor °C** — data logging of the electric motor temperature. \\ |
- | **Raw hall input** — data logging the input status from Hall sensors without filter. \\ | + | **Tfet °C** — data logging the temperature of field-effect transistors. \\ |
- | **Hall index** — virtual position of motor. \\ | + | **Raw hall input** |
- | **Throttle %** — throttle grip data logging. \\ | + | **Hall index** |
- | **Brake %** — brake lever data logging. \\ | + | **Throttle %** — throttle grip data logging. \\ |
- | **FOC Vq** — Q-axis voltage data logging. \\ | + | **Brake %** — brake lever data logging. \\ |
- | **FOC Vd** — D-axis voltage data logging. \\ | + | **FOC Vq** — Q-axis voltage data logging. \\ |
- | **FOC Iq** — Q-axis current data logging. \\ | + | **FOC Vd** — D-axis voltage data logging. \\ |
- | **FOC Id** — D-axis current data logging. \\ | + | **FOC Iq** — Q-axis current data logging. \\ |
- | **FOC Iq request** — Q-axis current request data logging. \\ | + | **FOC Id** — D-axis current data logging. \\ |
- | **FOC Id request** — D-axis current request data logging. \\ | + | **FOC Iq request** |
- | **Current phA** — data logging the current on the A phase of the electric motor. \\ | + | **FOC Id request** |
- | **Current phB** — data logging the current on the B phase of the electric motor. \\ | + | **Current phA** — data logging the current on the A phase of the electric motor. \\ |
- | **Current phC** — data logging the current on the С phase of the electric motor. \\ | + | **Current phB** — data logging the current on the B phase of the electric motor. \\ |
- | **PAS frequency RPM** — PAS frequency data logging. \\ | + | **Current phC** — data logging the current on the С phase of the electric motor. \\ |
- | **PAS torque Nm** — PAS torque data logging. \\ | + | **PAS frequency RPM** — PAS frequency data logging. \\ |
- | **PAS power W** — PAS power data logging. \\ | + | **PAS torque Nm** — PAS torque data logging. \\ |
- | **Speed request** — speed request data logging. \\ | + | **PAS power W** — PAS power data logging. \\ |
- | **Torque request** — torque request data logging.\\ | + | **Speed request** |
+ | **Torque request** | ||
===== Statistics ===== | ===== Statistics ===== | ||
- | In the menu section **Controller** > **Statistics** you can view the data on the Controller. These are trip statistics that will be automatically reset when the controller is powered off. If you have several Controllers in the system, then you can see the summary data for all controllers in the general statistics in the On-board computer. | + | In the menu section **Controller** |
+ | |||
+ | {{: | ||
- | {{:en:controller:13_0.8.png?nolink |}} | + | **Wh used total** |
+ | **Wh used** | ||
+ | **Wh regen.** | ||
+ | **Regen. %** — the percentage of energy recovered during recuperation (**%**). \\ | ||
+ | **Ah used total** | ||
+ | **Ah used** | ||
+ | **Ah regen.** | ||
+ | **Min bat. voltage** — minimum battery voltage, in Volts (**V**). \\ | ||
+ | **Max phase curr.** — maximum phase current, in Amps (**A**). \\ | ||
+ | **Peak power** — maximum motor power, in Watts (**W**). \\ | ||
+ | **Max motor temp.** — maximum motor temperature, | ||
+ | **Max controller | ||
- | **Wh used total** — total energy consumption (used plus regen), in Watt-hours (**Wh**). | + | The values below are approximate! |
- | **Wh used** — energy consumption, in Watt-hours | + | **Motor efficiency** — efficiency of the electric motor, in percent |
- | **Wh regen.** — energy gained during | + | **Eff. average** — average efficiency of the electric motor, in percent |
- | **Regen. %** — the percentage of energy recovered during recuperation (**%**). \\ | + | **Torque** — current torque of the electric motor, in Newton-meters |
- | **Ah used total** — total energy consumption (used plus regen), in Ampere hours (**Ah**). \\ | + | **Power out** — the power that the electric motor delivers, in Watts (**W**). \\ |
- | **Ah used** — energy consumption, in Ampere hours (**Ah**). \\ | + | **Power in** — power supplied to the electric motor, in Watts (**W**). |
- | **Ah regen.** — energy gained during | + | |
- | The values below are approximate! \\ | ||
- | **Motor efficiency** — efficiency of the electric motor, in percent (**%**). \\ | ||
- | **Eff. average** — average efficiency of the electric motor, in percent (**%**). \\ | ||
- | **Torque** — current torque of the electric motor, in Newton-meters (**Nm**). \\ | ||
- | **Power out** — the power that the electric motor delivers, in Watts (**W**). \\ | ||
- | **Power in** — power supplied to the electric motor, in Watts (**W**). \\ | ||
===== Device information ===== | ===== Device information ===== | ||
- | In the menu section **Controller** > **Device Information** you can view the basic information about the Controller. In this menu, you can check which firmware version is loaded into your Controller, as well as other parameters that differ depending on the Controller model. | + | In the menu section **Controller** |
- | {{: | + | {{: |
- | **Micro Nucular Controller** — device name depending on the type of Controller. \\ | + | **Nucular Controller** |
- | **Max supply** — 95V. The warranty covers supply voltages up to **90V** inclusive. \\ | + | **Max supply** |
- | **Max current** — the value of the maximum phase current, depending on the type of Controller, in amperes (A). \\ | + | **Max current** |
- | **Firmware date** — firmware compilation date. \\ | + | **Encoder speed** — 26kHz or 580kHz (new Controller version with orange phase wires). \\ |
- | **Firmware ver.** — version of the installed firmware, you can check for updates in the section **[[en: | + | **Firmware date** |
- | **Loader date** — the data loader compilation date. \\ | + | **Firmware ver.** |
- | **Loader version** — data loader version. \\ | + | **Loader date** |
- | **Worked** — operating time of the Controller in kilowatt-hours (kW*h). \\ | + | **Loader version** |
- | **t° middle 100 h** — the average temperature of the Сontroller over the last 100 hours. \\ | + | **Production date** — date of manufacture of the controller. \\ |
- | **t° middle** — the average temperature of the Сontroller over all time. \\ | + | **Worked** |
- | **Current protections** — the number of triggered overcurrent protections over all time of operation of the controller. \\ | + | **t° middle 100 h** — the average temperature of the Сontroller over the last 100 hours. \\ |
- | **Temperature protections** — the number of triggered temperature protections over all time of operation of the controller. \\ | + | **t° middle** |
- | **Voltage protections** — the number of triggered voltage protections over all time of operation of the controller. \\ | + | **Current protections** |
- | **Power cycle** — number of controller switching on. \\ | + | **Temperature protections** |
- | **Power-on time** — total operating time of the Controller, minutes, hours, days. | + | **Voltage protections** |
+ | **Power cycle** | ||
+ | **Power-on time** | ||
+ | **Serial number** — serial number of the Controller (for devices manufactured from 01 Jul 2022). Take a photo or write down this number and keep it separate from the Controller. You may need it when requesting repairs or if the Controller is stolen. After updating the firmware to 0.8.7, in some versions of controllers manufactured before 01 Jul 2022, a serial number may also appear. Check after update. |